
www.manaraa.com

ii

A Novel Multi-Layer Virtual Memory

System to Solve Memory Leak Problem

Prepared by

Ahmed Ali Otoom

Supervisor

Dr. Mohammad I. Malkawi

A dissertation submitted in partial fulfillment of

the requirements for the Degree of Doctor of

Philosophy in Computer Science.

Graduate College of Computer Studies

Amman Arab University for Graduate Studies

July, 2007

www.manaraa.com

iii

AUTHORIZATION OF DISSEMINATION

www.manaraa.com

iv

RESOLUTION OF THE EXAMINI

www.manaraa.com

v

Acknowledgment

"All praises and thanks to ALLAH"
 I would like to thank my supervisor Dr. Mohammad Malkawi who

provided me full support, encouragement, and guidance in order to get

this dissertation ready. Without his help and support, this work would

not have been possible. He was always available any time I needed

help.

My sincere thanks go to Dr. Naim Ajlouni; the Dean of Graduate

College of Computer Studies, Dr. Hilal Al-Bayatti; the Head of

Computer Science Department, all of the lecturers, administration, and

the staff of Amman Arab University for Graduate Studies.

I also thank my parents, my wife, my daughters: Moneera, Mona,

Roqayya, and Eman, my sons: Abedallah, and Abedalrahman, my

brothers: Abu Walid, Mohammed, Sultan, Essa, Dr. Sameer, and

Samer, my sisters: Mona, Manwa, Ebtisam, Amal, Samer, Sawsan,

and Wafa, my relatives, my friends, all of my colleagues, and Dr.

Mohammed Alrefai for their encouragement.

www.manaraa.com

vi

Dedication

I dedicate this work to

My Parents

www.manaraa.com

vii

Table of Contents

Acknowledgment ... v

Dedication .. vi
Table of Contents ... vii

List of Figures ... xi
List of Tables ... xii

Abstract ... xiii

Abstract in Arabic ... xv
Arabic Summary .. xv

CHAPTER ONE INTRODUCTION ... 2

1.0 Introduction .. 2

1.1 The Statement of the Problem ... 4

1.1.1 Problem Definition .. 4

1.1.2 Dissertation Questions ... 5

1.1.3 Dissertation Scope ... 6

1.1.4 Dissertation Contributions .. 6

1.2 Dissertation Methodology .. 8

1.3 Organization of Dissertation ... 8

1.4 Conclusion .. 10

Chapter Two Dynamic Memory Allocation and Current Approaches for Solving
Memory Leak Problem .. 11

2.0 Introduction .. 11

2.1.0 Dynamic Memory Allocation .. 11

2.1.1 Dynamic Memory Allocation Strategies ... 14

2.1.2.0 Dynamic Memory Allocation Algorithms ... 14

2.1.2.1 Fixed-Size-Blocks Allocation ... 15

2.1.2.2 Buddy Blocks Allocation ... 15

2.1.2.3 Heap-based Memory Allocation .. 15

2.1.3 Dynamic Memory Allocation Functions ... 15

2.1.4 The Access State of Referencing a Dynamically Allocated Object ... 17

2.1.5 Dynamic Memory Allocation and Memory Leak 17

2.2 Approaches for memory leak detection ... 19

2.2.1 Assertions and Static Analysis ... 19

2.2.2 Dynamic checkers ... 21

2.2.3 Hardware-assisted solutions ... 23

www.manaraa.com

viii

2.2.4 Garbage collectors and memory leak ... 27

2.3 Shortcomings of current approaches .. 31

2.4 Conclusion .. 32

Chapter Three A New Approach for Memory Leak Detection (MLD) Using Aging in
Physical Memory Space ... 33

3.0 Introduction .. 33

3.1 Memory Leak Detection (MLD) Using Aging in Physical Memory 35

3.2 MLD Algorithm Pseudo Code ... 39

3.3 MLD Algorithm Explanation... 40

3.3.1 MLD Main Function ... 42

3.3.2 Initialization .. 43

3.3.3 Bookkeeping ... 44

3.3.4 Memory Allocation and Deallocation Functions 46

3.3.4.1 Malloc () ... 47

3.3.4.2 free () ... 48

3.3.5 Memory Leak Detection and Sweeping .. 49

3.3.5.1 Memory Leak Detection .. 49

3.3.5.2 Memory Leak Sweeping .. 50

3.4 Crash Delay .. 51

3.5 False Positives ... 52

3.6 False Negatives.. 53

3.7 Memory Leaks and Telemetry ... 54

3.8 Conclusion .. 55

Chapter Four Multi-Layer Virtual Memory System (ML-VMS) 56

4.0 Introduction .. 56

4.1 Multi-Layer Virtual Memory System (ML-VMS) 59

4.2 Address Resolution... 61

4.3 The MLDR Algorithm Based on the ML-VMS .. 62

4.3.1 Memory Allocation ... 62

4.3.2 Memory Deallocation ... 63

4.3.3 ML-VMS and Aging .. 63

4.3.4 Object Recovery .. 64

4.4 MLDR algorithm block diagram based on ML-VMS 64

4.5 MLDR Explanation .. 67

4.5.1 Memory Allocation Module Explanation ... 67

4.5.2 Memory Deallocation Module Explanation ... 69

4.5.3 MLDR with Aging Module Explanation... 71

4.5.4 Object Recovery Module Explanation ... 74

www.manaraa.com

ix

4.6 Crash Preventing ... 76

4.7 False Positives ... 78

4.8 False Negatives.. 79

4.9 Memory Leaks and Telemetry ... 80

4.10 Conclusion .. 81

Chapter Five Performance Evaluation and Simulation .. 83

5.1 Performance Analysis .. 83

5.1.1 The MLD Complexity .. 84

5.1.2 The MLD Parallelized .. 86

5.1.3 Demand Paging Access Time .. 88

5.1.4 ML-VMS Access Time .. 89

5.1.5 ML-VMS Overhead Cost .. 90

5.2 Trace-Driven Simulation of Memory Leak Detection Algorithm 91

5.2.1 Data Trace Collection and Leak Injection (Stage One) 92

5.2.1.1 MLD Bench Mark ... 92

5.2.1.2 Data Collection ... 93

5.2.1.3 Leak Injection ... 97

5.2.2 Trace-Driven Simulation (Stage Two) ... 98

5.2.3 Simulation Assumptions .. 101

5.2.4 Input and Output Parameters .. 101

5.2.5 Simulation Model .. 101

5.2.5.1 Simulation Model (Demand Paging) .. 102

5.2.5.2 Simulation Model of Demand Paging with MLD Algorithm 104

5.2.6 Simulation Results .. 105

5.2.6.1 Time versus Heap Size ... 105

5.2.6.2 Page Age Threshold (Page_Age_Theshold) Vs False Negatives and

Overhead Cost .. 108

5.2.6.3 Page Size Vs False Negatives ... 112

5.3 Simulation Results of the MLDR ... 114

5.3.1 Time versus Heap Size ... 114

5.3.2 Time versus Heap Size for both of the MLD and MLDR 117

5.3.3Time versus Heap Size and Disk Space Used ... 118

5.4 Comparing MLD and MLDR to Current Solutions 122

5.4.1 MLD and MLDR versus SWAT ... 123

5.4.2 MLD and MLDR versus Garbage Collectors .. 127

5.5 Conclusion .. 128

Chapter Six Conclusions and Future Works ... 130

www.manaraa.com

x

6.0 Introduction .. 130

6.1 Results ... 130

6.1.1 Performance .. 131

6.1.2 Crash Preventing ... 132

6.1.3 False Negatives .. 135

6.1.4 False Positives .. 135

6.1.5 Run-time solution .. 136

6.2 Simulation Results .. 137

6.3 Implementation Guidelines .. 137

6.3 MLD versus MLDR ... 137

6.4 Future work .. 138

References .. 139

Appendices ... 144

www.manaraa.com

xi

LIST OF FIGURES

FIGURE 1: THE PROCESS MAIN PARTS: DATA AND CODE ... 12
FIGURE 2: OVERALL MECHANISM OF THE HEAPMON(SHETTY ET AL, 2004) 26
FIGURE 3: A REPRESENTATIVE, THOUGH SMALL, STATE OF COMPUTATION (ABDULLAHI

AND RINGWOOD, 1998) .. 29
FIGURE 4: GARBAGE COLLECTION TAXONOMY (ABDULLAHI AND RINGWOOD, 1998) ... 30
FIGURE 5: THE PSEUDO CODE FOR MLD ALGORITHM .. 39
FIGURE 6: FLOW DIAGRAM FOR MLD ALGORITHM .. 41
FIGURE 7: MLD ALGORITHM - MAIN FUNCTION ... 42
FIGURE 8: MLD ALGORITHM-INITIALIZE() FUNCTION... 43
FIGURE 9: MLD ALGORITHM-BOOKKEEPING() FUNCTION ... 44
FIGURE 10: MLD ALGORITHM – MALLOC() FUNCTION .. 47
FIGURE 11: MLD ALGORITHM- FREE() FUNCTION .. 48
FIGURE 12: MLD ALGORITHM- ISLEAKYPAGE() - LEAK DETECTION FUNCTION 49
FIGURE 13: MLD ALGORITHM- SWEEPER() – LEAK SWEEPING FUNCTION 50
FIGURE 14: ADDRESS RESOLUTION IN ML-VMS - MAPPING VHTR INTO PHYSICAL

ADDRESSES ... 61
FIGURE 15 : THE BLOCK DIAGRAM OF MLDR ALGORITHM ... 67
FIGURE 16: MEMORY ALLOCATION FOR MLDR ... 67
FIGURE 17: MALLOC() FUNCTION FOR THE MLDR ... 68
FIGURE 18: MEMORY DEALLOCATION OF MLDR .. 69
FIGURE 19: MLDR WITH AGING .. 71
FIGURE 20: A BLOCK OF CODE FOR THE MLDR EXAMPLE ... 72
FIGURE 21: OBJECT RECOVERY FOR MLDR.. 75
FIGURE 22: MLD PARALLELIZED ... 86
FIGURE 23: TRACE-DRIVEN SIMULATION PROGRAM - ABSTRACT BLOCK DIAGRAM 91
FIGURE 24: A SNAPSHOT OF ONE OF THE TRACE FILES ... 96
FIGURE 25: VIRTUAL MEMORY SYSTEM IMPLEMENTED BY DEMAND PAGING 103
FIGURE 26: VIRTUAL MEMORY SYSTEM IMPLEMENTED BY DEMAND PAGING WITH MLD

 ... 104
FIGURE 27: EXPERIMENT ONE: TIME VS HEAP SIZE ... 107
FIGURE 28: PAGE_AGE_THRESHOLD VS NO OF FALSE NEGATIVES AND OVERHEAD 110
FIGURE 29: PAGE SIZE VERSUS NUMBER OF FALSE NEGATIVE OBJECTS 112
FIGURE 30: EXPERIMENT ONE: TIME VS HEAP SIZE ... 117
FIGURE 31: TIME VERSUS HEAP SIZE COMPARISON BETWEEN MLD AND MLDR 117
FIGURE 32: TIME VERSUS DISK SPACE USED .. 119
FIGURE 33: PAGE_AGE_THRESHOLD VS NO OF FALSE NEGATIVES AND OVERHEAD 121

www.manaraa.com

xii

LIST OF TABLES

TABLE 1: AUGMENTED PAGE TABLE .. 45
TABLE 2: MALLOCTABLE, MEMORY ALLOCATION TABLE .. 48
TABLE 3: VIRTUAL HEAP TABLE(VHT) ... 60
TABLE 4: A HORIZONTAL SNAPSHOT SLICE OF THE AUGMENTED PAGE TABLE AT TIME (T6)

 ... 73
TABLE 5: BENCHMARK USED PARAMETERS .. 95
TABLE 6: AN EXAMPLE OF ACCUMULATED AMOUNT OF INJECTED LEAK IN TWO TRACE

FILES ... 98
TABLE 7: HEAP SIZE VERSUS TIME .. 106
TABLE 8: FALSE NEGATIVES VS DIFFERENT VALUES OF PAGE_AGE_THRESHOLD 109
TABLE 9: PAGE SIZE VERSUS FALSE NEGATIVE OBJECTS .. 112
TABLE 10: HEAP SIZE VERSUS TIME .. 115
TABLE 11: TIME VERSUS HEAP SIZE AND USED DISK SPACE 119
TABLE 12: PAGE AGE THRESHOLD VERSUS FALSE NEGATIVES, FALSE POSITIVES AND

OVERHEAD ... 120
TABLE 13: THE MLD AND MLDR VERSUS SWAT .. 126
TABLE 14: MLD VERSUS MLDR ... 138

www.manaraa.com

xiii

A Novel Multi-Layer Virtual Memory System to Solve Memory Leak Problem

Prepared by

Ahmed Ali Otoom

Supervisor

Dr. Mohammad I. Malkawi

Abstract

Memory leak problem is one of the major causes of software failures.

Current approaches for solving memory leak problem are not thorough; they either

detect memory leak in development environments using source code, re-linking,

or recompilation or they only remove unreachable objects in run-time garbage-

collected environments. These approaches do not provide a complete run-time

solution.

This dissertation provides two new approaches for memory leak detection

and recovery in addition to a novel approach for dynamic memory management.

The first is memory leak detection (MLD) algorithm. This algorithm reflects both of

the physical and virtual behavior of memory allocation and benefits from the

hardware support available for tracking physical pages in real memory in order to

detect leak in virtual address space. The latter is a memory leak detection and

recovery (MLDR) algorithm based on a novel approach for dynamic memory

management, a multi-layer virtual memory system (ML-VMS). The ML-VMS

reorganizes the currently used dynamic memory management and dynamic

memory allocation mechanisms in order to solve or overcome the problem of

memory leak

The MLD uses a conservative approach to remove unreachable objects and

save address space. It delays possible application crashes due to the lack of virtual

memory, but it can not solve the problem of stale objects. The MLDR provides a

thorough run-time solution. It handles the problem of false positives, false

negatives, and prevents target applications from crash due to the lack of virtual

www.manaraa.com

xiv

memory given a well-tuned parameters and that a target application can

tolerate an additional overhead. Both approaches are trace-driven simulated in

order to provide a proof of concept and show the algorithms’ validity. Our approach

is compared to some current approaches for memory leak detection and recovery

and is shown how it outperforms these approaches in providing a complete run-

time solution. The MLDR is recommended for mission critical applications that

have to live for a long time and can tolerate a controllable overhead cost.

Key words: multi-layer virtual memory system, memory leak detection, memory

leak recovery, virtual memory, memory aging, and dynamic memory allocation.

www.manaraa.com

xv

ABSTRACT IN ARABIC

تسرب الذاكرةنظام مبتكر متعدد الطبقات للذاكرة الافتراضية لحل مشكلة

 إعداد

احمد علي عتوم

دكتورـراف الــاش

 محمد عصام ملكاوي

Arabic Summary

 سباب الرئيسة في فشل واخفاق البرمجيات. ان الاساليب المتبعةحد الأأ الذاكرة تسربة لتعتبر مشك

من انها غير كامله فهي اما تكتشــا المشكلة خ م مرحلة تطو ر البرمجيات لحل هذه المشـكلة تعا حاليا

باســـتمدام البرناملم المصـــدري وتســـتمدم اعادة الرب والترتمة واما تقوم بحذف الكييونات التي لا كن

حالية لالوصــوم اليها ااياا التيفيذ وكه هو متبفي في بي ة البرمجيات الجامعة للمهم ت وبالتاف فان الحلوم ا

 .شام للمشكلة تيفيذ ا لا تقدم ح

تقدم هذه الاطروحة طر قتين تد دتين لاكتشـاف المشـكلة ومعالجتها بالاضــافه ال اسلوب مبتكر

. تعكس هذه تسرـــبهليظـام ادارة الـذاكرة الـد ياميا. الطر قة الاول هي خوارةمية اكتشـــاف الذاكرة الم

ز ائية والذاكرة الافتراضـــية في حجز الكييونات وتســـتفيد من الطر قـة اســـلوب عمل كل من الذاكرة الفي

ــبالمعدات المتوفرة لمتابعة الصـــفحات الفيز ائية في لذاكرة في ا الذاكرة الحقيقية من اتل اكتشـــاف تسرـ

لطر قة ومعالجتها. تبيى هذه ا خوارةمية اكتشاف الذاكرة المتسربهالذاكرة الافتراضية. والطر قة الثانية هي

دارة باضافة طبقة تد دة ليظام الاسلوب قوم هذا االمتعدد الطبقات لادارة الذاكرة. المبتكر سلوبالاعلى

 شكلة.بحيث سمح بحل شامل للم الافتراضية الذاكرة

تســـتمدم الطر قة الاول اســـلوب تحفظي في حذف الكييونات التي لا كن الوصـــوم اليها من

ســـمح للبرناملم باســـتمرار التيفيذ. تطيل هذه الطر قة في عمر البرناملم من اتل توفير مســـاحة اضـــافية ت

ــة لا ــاحة المطلوبة من الذاكرة لكيها في الوفس نفس ــل المحتمل نتيجة لعدم توفر المس البرناملم وتؤخر الفش

 تحل من مشكلة

www.manaraa.com

xvi

ةمن بعيــد و حتمــل ان قوم الكييونــات المتعفيــه وهي الكييونــات التي حجزهــا البرنــاملم ميــذ

مها مرة اخرى. تقدم الطر قة الثانية ح اشمل للمشكلة فهي تحل مشكلة الكييونات التي لا كن باستمدا

الوصــوم اليها بالاضــافة ال الكييونات المتعفيه. كه انها تســتطيفي ان ليفي فشــل البرمجيات لانها ت ــمن ان

. تم على الافراص الصـــلبةاهية ان لد يا مســـاحة غير متي على اعتباردائما متوفرةالمســـاحة المطلوبه للحجز

 وتم مقارنه الاســلوب الجد د مفي بعا الحلوم الحالية الطر قتين باســتمدام التحليل وبراملم المحاكاةاابات

 في باســتمدام الاســلوب الجد د يصــح لمشــكلة. لوبيان مدى نجاح الاســلوب الجد د في ا جاد حل شــامل

 طو لة. لفترة ةمييةو في ان تبقى في حالة تيفيذتتطلب لبرمجيات التي ا

www.manaraa.com

2

CHAPTER ONE
INTRODUCTION

This chapter introduces the problem to be addressed, gives justification and

purpose of this work, and lists the major questions, contributions and the basic

structure of the dissertation.

1.0 Introduction

Due to time-to-market pressures, limited availability of resources, cost

reduction, increased demand of software, and software’s inherent complexity,

software producers often release their products without enough testing and without

having their products undergo enough necessary quality assurance constraints.

Memory leak is one of the famous notorious memory bugs that dominate the US-

CERT and CERT/CC vulnerability reports (US-CERT and CERT/CC, 2007).

According to Marcus and Stern (Marcus and Stern, 2000), Software bugs in

deployed codes account for as much as 40% of computer system failures. The

NIST (National Institute of Standards and Technology, Department of Commerce,

2002) estimated that the software bugs cost the U.S. economy $59.9 billion

annually, or 0.6 % of GDP. In this dissertation, we concentrate on one of the major

software bugs called memory leak.

In most general terms, memory leak occurs because of 1) unreachable

objects: objects exist because the program either unintentionally or maliciously

neglects to free heap-allocated objects and therefore these objects are lost and 2)

useless objects: a program keeps references to objects that are never used again.

www.manaraa.com

3

Memory leak is one of the major causes of software failures. Memory leak

is mainly serious in long live applications. Memory leak slowly consumes available

memory, causing performance degradation and crashing the system. Memory leak

is hard to detect since it has few symptoms other than slow and steady increase

in memory consumption. Memory leak occurs because some imperative

languages place the responsibility of memory allocation and reclamation on the

programmers. Programmers must use reclamation methods such as dispose,

delete, or free system calls. This explicit store management leads to two common

bugs: memory leak and dangling reference problem. Memory leak may lead to

running out of virtual address space which results in computation failure. Another

consequence of memory leak is thrashing. Memory leak can cause extreme

nonlocality of reference as live cells are dispersed over a large virtual address

space.

Current approaches for solving memory leak problem are not thorough; they

either detect memory leak in development environments as performed by static

analysis tools which requires the existence of source code or they garbage collect

unreachable objects as performed by garbage collectors. These collectors provide

partial solution only in the languages that was designed with garbage collection in

mind. There is no complete run-time solution available.

 In this dissertation, we explore the concept of aging in the paged physical

space for the detection of potential leaks in the virtual space. We also present a

www.manaraa.com

4

novel approach for dynamic memory management, a multi-layer virtual

memory system. The approach reorganizes the dynamic memory allocation space

in a manner that enables a complete run-time resolution of memory leak.

1.1 The Statement of the Problem

1.1.1 Problem Definition

 Memory leak often results in failures especially in long live processes. A

software application may hang or result in an overall system crash or global system

performance degradation due to memory leaks. Different businesses can deal with

software failures in different ways. In some cases, system administrators simply

restart the system whenever the memory leaks to a point where a crash is eminent

or performance degrades beyond an acceptable level. Systems with critical

applications can not tolerate the cost of frequent shutdowns or performance

degradation. The consequences of unresolved memory leaks in real-time systems

can have a direct impact on human safety, security and business sustainability.

Currently, there are some solutions to memory leak problem, but these

solutions are not thorough, suffer from performance degradation, and there is no

complete run-time solution. The current dynamic memory management

mechanisms allow these problems to exist and add constraints to potential

solutions. Reorganizing the current dynamic memory management system into a

multi-layer virtual memory system provides a basis for a fundamental solution to

memory leak and other problems.

www.manaraa.com

5

The purpose of this study is to present a novel approach for dynamic

memory management in a multi-layer virtual memory system. This approach

reorganizes the currently used dynamic memory management and dynamic

memory allocation mechanisms in order to solve or overcome the problem of

memory leak. It also explores the concept of aging in the paged physical space as

a method of detection of potential leaks in the virtual space.

1.1.2 Dissertation Questions

The major dissertation questions are:

1. Why does the currently used dynamic memory management system permit

the memory leak issue to exist?

2. What are the available solutions to memory leak problem and what are their

shortcomings?

3. How can we use the concept of page aging in physical space as a means

for detecting memory leaks?

4. Why aging in physical space is preferred over aging in the virtual space?

5. What is Multi-Layer Virtual Memory System?

6. What are the guidelines that facilitate the implementation of the Multi-Layer

Virtual Memory System?

7. How does the Multi-Layer Virtual Memory System help in resolving memory

leak problems?

www.manaraa.com

6

1.1.3 Dissertation Scope

 This dissertation will focus on solving the problem of memory leak. The

Multi-Layer Virtual Memory System and aging will be investigated in the extent of

its relation to the resolution of the memory leak problem.

1.1.4 Dissertation Contributions

Our dissertation adds the following contributions:

1. Present and develop a new approach for memory leak detection using the

concept of aging in the physical memory system to identify and solve

memory leaks in the virtual memory system, thus allowing the algorithm to

utilize the hardware available for virtual memory organization as shown in

chapter 3.

2. Present and develop a novel approach for dynamic memory management,

a multi-layer virtual memory system as shown in chapter 4.

3. Present a new approach for memory leak detection and recovery based on

the Multi-Layer Virtual Memory System as shown in chapter 4.

4. Provide guidelines that facilitate the implementation of both approaches:

memory leak detection with aging and memory leak detection and recovery

based on the new structure of the Multi-Layer Virtual Memory System. These

guidelines are explained in chapters 3 and 4 respectively.

 The memory leak detection and recovery based on the Multi-Layer Virtual

Memory System approach that we present in this dissertation provides the

following contributions:

www.manaraa.com

7

a) Solves the problem of both of the unreachable and useless objects.

b) Handles the problem of false positives.

c) Provides run-time solution for memory leak detection and recovery whereas

most of previous approaches either detect memory leak in development

environment or remove only unreachable objects in run-time environment

as performed by garbage collectors.

d) Prevents programs from crashing by guaranteeing that the requested space

on the virtual space is always available by moving potential leaky objects to

disk that presumably has an unlimited space.

e) Although there is a performance penalty cost, discussed in chapter 5, that

will be paid by the algorithm, this penalty is kept to the minimum by:

1) The performance penalty cost will never be paid (i.e deferred) until

either the program exceeds a certain threshold in virtual address space or

there is no available memory to be allocated and the application is about to

crash.

2) The algorithm consists of modular parts allowing optimal future

implementations to these modules which reduce the overall performance

penalty cost, as a result.

3) The algorithm utilizes tunable parameters that are designed in order

to reduce the cost.

4) Performance evaluation of the algorithms and methods is presented

in the dissertation.

www.manaraa.com

8

5) Parallel programming and data partition is suggested in chapter 5

and left to be explored as a future work.

1.2 Dissertation Methodology
Our dissertation passes through the following phases:

 Identifying the shortcomings of the current solutions of memory leak

problem and how it is related to the current dynamic memory

management system.

 Developing two descriptive algorithms. The first is for the new approach

of memory leak detection using aging in physical memory space. The

latter is a memory leak detection and recovery that utilizes the novel

dynamic memory management, multi-layer virtual memory system to

solve memory leak problems.

 Evaluating the performance of both approaches using analysis and a

trace-driven simulation program. The simulation program helps in

algorithms' validation and verification and provides a proof of concept.

 Analyzing the results and concluding.

1.3 Organization of Dissertation
This dissertation consists of six chapters that build on each other. Chapters

three and four along with the analysis in chapter five are the core material being

used to publish the following papers:

a. Memory Leak Detection Using Aging in physical Memory Space

b. A Novel Multi-Layer Virtual Memory System for Solving Memory Leak

Problem.

www.manaraa.com

9

The following is a detailed outline for each chapter:

 Chapter I: Introduction. This chapter introduces the problem to be

addressed, gives a justification and purpose of this work, and lists

the basic structure of the dissertation.

 Chapter II. Dynamic Memory Allocation and Current Approaches for

Solving Memory Leak Problem. This chapter overviews the dynamic

memory allocation process, discusses and surveys the existing

mechanisms for detecting and solving memory leak problem and lists

the shortcomings of these available solutions. Readers who are

familiar with dynamic memory allocation and current approaches to

solving memory leak and their shortcomings can skip this chapter.

 Chapter III. A New Approach for Memory Leak Detection Using Aging

in Physical Memory Space. In this chapter, we exploit the concept of

aging in physical memory space to develop a new approach for

memory leak detection in virtual address space using aging in

physical memory space.

 Chapter IV. A Multi-Layer Virtual Memory System. In this chapter, we

describe the Multi-Layer Virtual Memory System. We show how the

Multi-Layer Virtual Memory System along with a new memory leak

detection and recovery algorithm allow for efficient resolution of

memory leak problem. We also provide some guidelines that

facilitate the implementation of this new structure.

www.manaraa.com

10

 Chapter V. Performance Evaluation and Simulation. This chapter

analyzes the performance of the presented algorithms in terms of

access time and complexity. It shows, through analysis and a trace-

driven simulation program, how some of the performance measures

can be enhanced. A separate simulation model is provided for each

algorithm. Along with performance analysis, simulation programs

validate the new approaches and provide a proof of concept. This

chapter also compares both algorithms to current memory leak

solutions and shows how the new approach outperforms the current

approaches in providing a complete run-time solution.

 Chapter VI. Conclusions and Future Works. This chapter provides

basic conclusions as well as directions for future research.

1.4 Conclusion

This chapter introduces the problem which is summarized in presenting a

novel approach for dynamic memory management that will reorganize the currently

used dynamic memory management and dynamic memory allocation mechanisms

in order to solve or overcome the problem of memory leak. It also gives

justifications and purpose of this work, and lists the major dissertation questions,

contributions and the basic structure of the dissertation

www.manaraa.com

11

Chapter Two
Dynamic Memory Allocation and Current Approaches for

Solving Memory Leak Problem

This chapter overviews the dynamic memory allocation process, discusses

the existing mechanisms for detecting and solving memory leak problem and lists

the shortcomings of the available memory leak solutions.

2.0 Introduction

Memory leak is particularly serious in long live applications. It slowly

consumes available memory, causing performance degradation and eventually

crashing the system. Memory leak is among the hardest bugs to detect since it has

few symptoms other than slow and steady increase in memory consumption (Xie

and Aiken, 2005).

In the next sections, we review the dynamic memory allocation process. We

show how the current dynamic memory allocation process allows the problem of

memory leak to occur. Then, we review various approaches used for memory leak

detection and recovery. After that, we list the shortcomings of these approaches

and finally, we summarize the chapter.

2.1.0 Dynamic Memory Allocation

Dynamic memory allocation is the allocation of memory storage for use

during the runtime of the program. A dynamically allocated object remains

allocated until it is freed explicitly by a programmer or by a garbage collector

www.manaraa.com

12

(Wikipedia, 2007). So, dynamic memory allocation is the allocation of

memory for the use of a computer program during runtime. Figure 1 shows how

memory is distributed among many pieces of data and code.

Text

Static

Stack

Heap

FIGURE 1: THE PROCESS MAIN PARTS: DATA AND CODE

Each program can be divided into text and data. The text is the actual program

code and the data is the information that the text (code) operates on. Data can be

further subdivided into static, stack, and heap.

Where:

Static: storage space is compiled into the program. Static variables are allocated

during program loading and deallocated when program exits. For more information

about pointers and memory, refer to "Pointer and Memory" by Parlante (Parlante,

2000).

/* global variables are static data */

int x[10]; /* x is stored in static area */

main () {

www.manaraa.com

13

stack: local variables and parameters of function calls are managed by the system

in the stack space during runtime. Stack variables are all allocated when entering

the declaring block and deallocated when exitting.

void dosomthing() {

float y; /* y is stored in the stack *

heap: dynamic allocations via new or malloc are allocated also at runtime and

stored in the heap space. Heap objects are allocated with malloc() or new() and

deallocated with free() or delete().

main()

char * str; /* the address of str is stored on the stack */

/* Allocate a string of 5 bytes on the heap. */

str = (char *) malloc(5);

...

/* de-allocate the heap memory*/

(void) free(string);

A dynamically allocated object remains allocated until it is deallocated explicitly,

either by the programmer or by a garbage collector. Both stack and heap

management complicate memory management because these areas are dynamic.

Of the two, stack management is much simpler than heap management because

the stack space is allocated by function call frames in a regular Last In First Out

(LIFO) pattern. Two factors make up heap management (Kline, 2007):

1. how to manage the allocation of variable-sized chunks of contiguous memory

2. how to manage the random order of allocations and deallocations

http://en.wikipedia.org/wiki/Garbage_collection_%28computer_science%29
http://en.wikipedia.org/wiki/Garbage_collection_%28computer_science%29
http://en.wikipedia.org/wiki/Garbage_collection_%28computer_science%29
http://en.wikipedia.org/wiki/Garbage_collection_%28computer_science%29
http://en.wikipedia.org/wiki/Garbage_collection_%28computer_science%29
http://en.wikipedia.org/wiki/Garbage_collection_%28computer_science%29

www.manaraa.com

14

2.1.1 Dynamic Memory Allocation Strategies

Several allocation strategies are used to find an available hole (free area)

for a new allocation. Some of these strategies are cited in (Kline, 2007):

1. First Fit: look for the first hole sufficiently large, starting from the beginning

2. Next Fit: look for the first hole sufficiently large, but start from where you left

off previously.

3. Best Fit: look for a hole of smallest possible size

4. Worst Fit: look for a hole of largest possible size

The selection of a specific strategy has direct impact on performance as

well as on external and internal fragmentation. Wilson and others (Wilson et al,

1995) discuss these issues in their survey “Dynamic Storage Allocation: A Survey

and Critical Review”.

2.1.2.0 Dynamic Memory Allocation Algorithms

The main problem for most algorithms is to avoid both internal and external

fragmentation while keeping allocation and deallocation efficient. Various

approaches are being used by memory allocation algorithms such as fixed-size-

blocks allocation, buddy blocks allocation, and heap-based memory allocation

(WikiPedia, 2007):

http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Fragmentation_%28computer%29
http://en.wikipedia.org/wiki/Algorithmic_efficiency

www.manaraa.com

15

2.1.2.1 Fixed-Size-Blocks Allocation

This solution uses a LIFO linked list of fixed size blocks of memory.

2.1.2.2 Buddy Blocks Allocation

This solution uses a binary buddy block allocator. Memory is allocated from

a large block of memory that is a power of two in size. If a block is more than twice

as large as desired, it is broken in two. One is selected and the process is repeated

recursively until the block is large enough. All the buddies of a particular size are

kept in a sorted linked list or tree. When a block is freed, it is compared to its buddy.

If they are both free, they are combined and placed in the next-largest size buddy-

block list. The allocator starts with the smallest sufficiently large block in order to

avoid breaking blocks.

2.1.2.3 Heap-based Memory Allocation

Memory is allocated from a large pool of unused memory area called the

heap. The size of memory allocation can be determined at runtime. Allocated

regions are accessed via a reference. A free list is a linked list that connects

unallocated regions of the heap together. A deallocated region is added to the free

list, an allocated region is removed from the free list.

2.1.3 Dynamic Memory Allocation Functions

Gary Watson (Gary, 2007) provides a detailed list for memory allocation

commands and how they can be used in C language. The most frequently used

commands are described below:

www.manaraa.com

16

1. malloc fucntion: has the general form

void *malloc (unsigned int size)

This function allocates a specified amount of memory in bytes. It will return

a pointer to the beginning of the allocated space.

2. calloc function: has the general form

void *calloc (unsigned int number, unsigned intsize)

The calloc routine allocates a certain number of items, each of size bytes, and

returns a pointer to the space.

3. realloc function: has the general form

void *realloc (void *old_pnt, unsigned int new_size)

The realloc function expands or shrinks the memory allocation in old_pnt to

new_size number of bytes. Realloc copies as much of the information from old_pnt

as it can into the new_pnt space it returns, up to new_size bytes. If there is a

problem allocating this memory, a 0L value will be returned. If the old_pnt is 0L

then realloc will do the equivalent of a malloc (new_size). If new_size is 0 and

old_pnt is not 0L, then it will do the equivalent of free (old_pnt) and will return 0L.

4. free fucntion: has the general form

void free (void *pnt)

www.manaraa.com

17

The free routine releases allocation in pnt which was returned by malloc,

calloc, or realloc back to the heap. This allows other parts of the program to re-use

memory that is not needed anymore. It guarantees that the process does not grow

too big and swallow a large portion of the system resources.

2.1.4 The Access State of Referencing a Dynamically Allocated Object

When a pointer is used to reference a dynamically allocated object, the

access operation will result in one of the following states (success, illegal access,

and corruption):

1) success, if the pointer points to a reachable live object.

2) illegal access, if the object has been deallocated and the pointer contains the

address that is not allocated to some other object.

3) corruption, if the object has been deallocated and the pointer contains the

address that is allocated to some other object. The pointer will misguidedly access

an object that is not supposed to access.

2.1.5 Dynamic Memory Allocation and Memory Leak

Memory leak is one of the major causes of software failures. Memory leak

occurs because some imperative languages (e.g C, C++, Pascal, etc) place the

responsibility of memory allocation and reclamation on the programmers.

Programmers must use reclamation methods such as dispose, delete, or free

system calls.

www.manaraa.com

18

 This explicit store management leads to two common bugs: i)

incompleteness (also called memory leaks) and ii) unsoundness (also called the

dangling reference problem). Memory leak may lead to running out of virtual

address space which results in computation failure (Abdullahi and

Ringwood, 1998). On systems where all memory is in RAM, memory leak will result

in an immediate failure (Wikipedia, 2007). Another consequence of memory leak

is thrashing. Following Denning (Denning, 1968), a computation with page faults

every few instructions is said to thrash. Memory leaks can cause extreme

nonlocality of reference as live cells are dispersed over a large virtual address

space.

Explicit dynamic memory allocation in some languages like C and C++

leads to memory leak problem. Memory leak occurs when a program fails to

deallocate the unwanted previously allocated memory chunks. In some garbage

collected languages, memory leak occurs when a program keeps reference to a

memory chunk that will never be accessed in the future.

www.manaraa.com

19

2.2 Approaches for memory leak detection
 In order to detect software bugs such as memory leak, many approaches

have been proposed for dynamic code monitoring. The most commonly used

approaches are assertions and static analysis, dynamic checkers, hardware-

assisted solutions, and garbage collectors. We review these approaches in the

following sub-sections.

2.2.1 Assertions and Static Analysis

Assertions are inserted by programmers to perform required checks at

certain places. The program aborts if assertions are violated (Zhou et al, 2005).

Adding annotation (Evans, 1996) to the source code is used to make assumptions

about memory management explicit at interface points. Examples of this

approach include explicit model checking (Musuvathi et al. 2002; Stern and Dill

1995) and program analysis (Choi

et al. 2002; Engler and Ashcraft 2003; Hallem et al. 2002). Most static tools require

significant involvement of the programmer to write specifications or annotate

programs. Annotation is used by a static checker to make fixing memory

management problems in a more systematic and goal-directed manner. An

efficient use of the static checker should detect a broad class of errors that includes

misuse of pointers,

www.manaraa.com

20

use of dead storage, memory leaks, and dangerous aliasing. This approach does

not eliminate the need for run-time testing nor does it detect all errors.

Static analysis tools can find leaks before running the program by analyzing

source code and thus do not cause any runtime overhead. An example of these

tools is PREfix(Bush et al, 2000). This tool simulates the execution of individual

functions. It derives the information directly from the source code rather than

acquired through user annotations. Another static analysis tool, called Clouseau,

is presented in (Heine and Lam, 2003). This tool implements a practical ownership

model of memory management. In this model, every object is pointed to by one

and only one owning pointer which has the exclusive right to delete the object or

to pass the right of ownership to another pointer. Static analysis tools lack dynamic

information which leads to conservative results including false positives and they

do not find all leaks.

www.manaraa.com

21

2.2.2 Dynamic checkers

Dynamic checkers are automated tools that detect common bugs at run

time, with instrumentation inserted in the code that monitors invariants and reports

violations as errors. The analysis of this approach is based on actual execution

paths and accurate values of variables and aliasing information. Some examples

of these tools are DIDUCE (Hangal and Lam, 2002), Purify (Hastings and Joyce,

1992), Valgrind (Nethercote and Seward 2003), StackGuard (Cowan et al, 1998),

Insure++ (Parasoft Insure++, 2007), and Eraser (Savage et al, 1997). Some of

these tools can detect memory leaks, memory corruption, buffer overflow, and data

races. These tools often use compilers and code rewriting tools. While this

approach is promising it suffers from: i) dynamic aliasing especially in C and C++,

ii) high run-time overhead, iii) hard-coded bug detection functionality, iv) language

specificity, and v) difficulty to work with low-level code(Zhou et al, 2005).

One of the low-overhead memory leak detection tools is SWAT (Chilimbi

and Hauswirth, 2004). SWAT reports ‘stale’ heap objects that have not been

accessed for a user definable, long time as leaks. SWAT has been used by several

product groups at Microsoft and has proved effective at detecting leaks with a false

positive rate less than 10%. According to Chilimbi and Hauswirth, SWAT has three

advantages over Purify tool from Rational.

www.manaraa.com

22

First, it uses unique strategy of identifying leaks based on object staleness.

Second, since it uses sampling, the overhead is significantly lower than Purify (5%

Vs 3-5X). Third, SWAT provides an indication of which program instruction last

accessed by the leaked object.

JRocket, JVM, is a real-time memory leak detection tool that utilizes a trend

analysis of memory growth to detect memory leak. Each time there is a garbage

collection in the JVM, JRocket sends trend data to the memory leak detector. The

trend analysis shows the common object types in the heap and the rate at which

memory of these objects are growing. The longer the trend analysis is, the more

reliable the trend is. The JRocket can be used to detect memory leak, find out what

is leaking, and then drill down to what is causing the leak in the code. One of the

limitations of this tool is that it uses Java-based communication protocol which

means that JRocket will create new objects to send information over to the

management console. This may not be ideal, as the system probably low on

memory because of memory leak. Another limitation is that when there are large

amounts of information to send over, there is a risk of losing the connection to the

management console because of timeout problem (Ostlund, 2005).

JProbe from Quest Software (Quest Software, 2007) is another tool that

tracks memory growth to detect memory leak in Java applications. It views memory

usage for specific classes, methods and/or instances. It’s up to the users to

determine the impact of memory leak or code change (JProbe, 2007).

www.manaraa.com

23

The debug memory allocation or dmalloc library has been designed to

provide powerful debugging facilities such as memory-leak tracking, fence-post

write detection, file/line number reporting, and general logging of statistics. The

dmalloc library replaces the heap library calls normally found in the system libraries

with its own versions. When a call is made to malloc (for example), the dmalloc’s

 version of the memory allocation function is called. The dmalloc library

keeps track of a number of pieces of debugging information about pointer

including: where it was allocated, exactly how much memory was requested, when

the call was made, etc. This information can then be verified when the pointer is

freed or reallocated and the details can be logged on any errors (Watson, 2004).

2.2.3 Hardware-assisted solutions

In this subsection, we review two approaches that use software/hardware

solutions: hardware-assisted watch points and HeapMon.

In hardware-assisted watch points, a simple hardware is used to support

watching user selected memory locations. When a watched location is accessed,

an exception is generated and handled by the interactive debugger. In general,

dynamic monitoring is classified into two categories: Code-Controlled monitoring

(CCM) and Location-Controlled Monitoring (LCM).

www.manaraa.com

24

 In CCM, monitoring is performed at special points in programs as done by

assertion and most of dynamic checkers. In LCM, monitoring is associated with

memory locations as in hardware-assisted watch points and Intelligent Watcher

(iWatcher). LCM has two advantages over CCM. First, LCM monitors all access to

memory locations using all variable and pointer names, whereas CCM may miss

some accesses due to aliasing problems. Latter, LCM monitors only those

instructions that truly access the watched location, whereas CCM monitors many

unnecessary points. The main advantage of CCM is that it does not need hardware

support, while the LCM needs

it. IWatcher is demonstrated, by simulation, to detect buffer overflow,

memory leaks, accessing freed locations, stack smashing, and invariant violations

(Zhou et al, 2005).

HeapMon (Shetty et al, 2004) is another novel software/hardware approach

to detecting memory bugs such as reads from initialized or unallocated memory

locations. Memory leak is detected if, at the end of program execution, there are

words in the heap region that are still in one of the allocated states. HeapMon relies

on a helper thread that runs on a separate processor in a Chip Multi-Processor

(CMP) system. The Thread associates a state bit with each word on the heap. The

state bit indicates whether the word is unallocated, allocated but uninitialized, or

allocated and initialized.

www.manaraa.com

25

The state bits are updated when the word is allocated, initialized, or

deallocated. Bugs are detected as illegal operations, such as writes to unallocated

regions and reads from unallocated or uninitialized memory regions. These bugs

are logged to enable developers to pinpoint the bug’s nature and location. The

hardware support consists of an extra state bit for each cached word,

communication queues between the application thread and the helper thread, and

a small private cache for the helper thread. The main advantages of HeapMon are:

i) no human intervention is needed, either to insert breakpoints or watch points

ii)the bug detector is written in software, iii) no compiler is needed beyond relinking

the application with a static library or running it with dynamically-linked library, and

iv) the overhead is low. The storage overhead of this approach is 3.1% of the cache

size and 6.2% of the allocated heap memory size. The execution overhead is 8%

on average and 26% on the worst case.

www.manaraa.com

26

Figure 2 shows the general mechanism of HeapMon checking. Each heap

memory request proceeds in three steps. First, the request from the main

processor is forwarded to the main memory (step 1a) and to the HeapMon thread

(step 1b).

FIGURE 2: OVERALL MECHANISM OF THE HEAPMON(SHETTY ET AL, 2004)

 Requests are events of interest: memory allocation, memory deallocation,

and heap memory access. Extra information, such as process id, is piggybacked

to the HeapMon to perform the necessary checks. On a read request, the memory

replies with data (step 2a) and the tag processor reads the state for the request

word (step 2b) and performs a bug check whether the request type is allowed for

the current state of the word. The result of the bug check is reported to the main

processor (step 3a) and the state is updated if necessary (step 3b).

www.manaraa.com

27

2.2.4 Garbage collectors and memory leak

Garbage Collection has been an integral part of many programming

languages such as Java, Lisp, Smalltalk, Eiffel, Haskell, ML, Scheme, and Modula-

3, and has been in use since the early 1960s. There are many indisputable benefits

of garbage collectors including increased reliability, decoupling memory

management from class interface design, and less development time.

Dangling pointers and memory leaks do not occur in Java. However, garbage

collection has some performance impacts, pauses, configuration complexity, and

nondeterministic finalization (Goetz, 2003). Languages that use garbage collectors

are not immune to memory leaks. Although the garbage collector can recover

memory that has become unreachable and therefore logically useless, it cannot

free memory that is still reachable and therefore potentially still useful

(Wikipedia,2007). A leak detector that is based on a type accurate garbage

collection finds more memory leaks than a leak detector based on conservative

garbage collection.(Hirzel and Diwan, 2000)

www.manaraa.com

28

Garbage collection is an inevitable consequence of programming

languages that use dynamic data structures. With dynamic structures, the state of

computation can be considered as many-rooted, directed graph called the

computation graph (figure 3). The roots are the entry points to the graph. The

internal vertices are realized as cells, contiguous segments of memory. A cell is a

base address from which offsets can be accessed. In object-oriented languages,

cells are objects. If cells are not of a fixed size they often have a terminator or an

indicator of length in the cell’s header. The indicator is the number of bytes in the

cell or a pointer to the last byte in the cell. Edges are realized by store address

fields within cells. Cells referenced directly or indirectly from the root are called

reachable, accessible, or live. As computation processes, addition and deletion of

www.manaraa.com

29

roots, vertices, and edges modifies the graph. As a result, some portions of

the graph become unreachable, inaccessible, or dead. These disconnected

subgraphs make no contribution to the computation and known as garbage. In

figure 3, the garbage cell is denoted by a filled circle and the accessible cell by

unfilled circle. Without reuse, the finite store for allocating new vertices diminishes

to zero. The garbage collector is a process by which the area occupied by garbage

is reused (Abdullahi and Ringwood, 1998).

FIGURE 3: A REPRESENTATIVE, THOUGH SMALL, STATE OF COMPUTATION (ABDULLAHI AND

RINGWOOD, 1998)

Dijkstra et al introduce two useful abstractions to the study of garbage

collection. The mutator and the collector. The mutator abstracts the process that

performs the computation and allocation. The collector abstracts the process that

www.manaraa.com

30

reclaims garbage (Dijkstra et al, 1978). This abstraction, along with an

excellent survey about garbage collection techniques in uniprocessor environment,

is also mentioned in literature as a two-phase abstraction: garbage detection

phase and garbage reclamation phase (Wilson, 1992).

In his review, Abdullahi, lists the taxonomy of garbage collection (figure 4).

The collector process is divided into two subprocesses: Identification, I, and

Reclamation, R.

FIGURE 4: GARBAGE COLLECTION TAXONOMY (ABDULLAHI AND RINGWOOD, 1998)

Two classes of identification are identified: direct and indirect. Direct

identification (also called reference counting) identifies cells that have no reference

to them. Indirect identification identifies live cells by tracing them from the roots -

what remains must be unallocated or garbage. Reclamation is classified

depending on how free store is managed; If it can be managed as a free-list or a

heap. If managed as a free-list contiguous garbage can be coalesced to form larger

cells. If managed as a heap, a single reference, the top of the heap, indicates the

www.manaraa.com

31

 division between allocated and unallocated store (Abdullahi and Ringwood,

1998). More references about garabage collection and garbage collection

techniques can be found on the "Garbage collection bibliography" (Jones, 2003).

2.3 Shortcomings of current approaches

Static analysis tools can find leaks before running the program which adds

no running time overhead, but this limits them to be used in development

environment where source code is available. This approach does not eliminate the

need for run-time testing nor does it detect all errors. Static tools have no value

when source code is not available. More over, static analysis tools lack dynamic

information which leads to conservative results including false positives and they

do not find all leaks.

Dynamic checkers often use compilers and code rewriting tools. According

to Zhou et al (Zhou et al, 2005) this approach suffers from: i) dynamic aliasing

especially in C and C++, ii) high run-time overhead, iii) hard-coded bug detection

functionality, iv) language specificity, and v) difficulty to work with low-level code.

Despite the clear benefits of garbage collection such as increased reliability,

decoupling memory management from class interface design, and less

development time, garbage collectors work only with languages designed with

garbage collection in mind. More over, languages that use garbage collectors are

not immune to memory leaks. Garbage collector can recover memory that has

become unreachable and therefore logically useless but, it cannot free memory

that is still reachable and therefore potentially still useful.

www.manaraa.com

32

2.4 Conclusion

Memory leak occurs as a result of using dynamic memory allocation where

some imperative languages (e.g C, C++, Pascal, etc) place the responsibility of

memory allocation and reclamation on the programmers. In garbage collected

languages, memory leak occurs when the programs keep a reference to an object

that will never be used in the future.

The most commonly used approaches for memory leak detection and

recovery are assertions and static analysis, dynamic checkers, hardware-assisted

solutions, and garbage collectors. These approaches suffer from several

shortcomings. Static analysis tools lack dynamic information which leads to

conservative results including false positives and they do not find all leaks.

Dynamic checkers often use compilers and code rewriting tools. They suffer from:

i) dynamic aliasing, ii) high run-time overhead, iii) hard-coded bug detection

functionality, iv) language specificity, and v) difficulty to work with low-level code.

Hardware-assisted solutions are costly to implement and are used to enable

developers to pinpoint the bug’s nature and location with certain overhead cost.

Garbage collectors are limited to languages designed with garbage collection in

mind and can only remove unreachable objects in run-time environment.

Most of the available solutions are not thorough, suffer from performance

degradation, and do not provide a complete run-time solution. We alleviate some

of these problems in the next chapter, a new approach for memory leak detection

using aging in physical memory space. In chapter 4, we provide a complete run-

time solution by introducing another new approach for memory leak detection and

recovery based on the introduced novel structure, the ML-VMS

www.manaraa.com

33

Chapter Three
A New Approach for Memory Leak Detection (MLD)

Using Aging in Physical Memory Space

3.0 Introduction

Software aging refers to resource contention issues that can cause

performance degradation or can cause systems to hang, panic, or crash. Software

aging can include memory leaks, unreleased file locks, accumulation of

unterminated threads, data corruption/round-off accrual, file space fragmentation,

and others (Gross et al, 2002).

Aging, in this dissertation, is related to the time a piece of memory object

remains untouched. A leaky object by definition will begin to age since it will no

longer be accessed by any application program. Aging, in this context, can then

be used to detect memory leakage. Memory leaks and aging refer to objects in the

heap virtual space. Detecting the age and the leaky status of an object in the virtual

space is time consuming. In this dissertation, we exploit the status of a memory

object in reference to the physical memory space in order to detect the age of an

object and hence the leak in virtual address space. A new approach for memory

leak detection is presented based on the aging of an object in the physical space.

This approach for memory leak detection provides the following contributions:

1. Memory leak in the virtual space is detected based on aging in the physical

space, thus allowing the algorithm to utilize the hardware available for virtual

memory organization.

www.manaraa.com

34

2. MLD provides a conservative run-time solution for memory leak. This is

similar to conservative garbage collectors in the sense that it deals with

unreachable objects but it detects memory leak based on physical memory

aging.

3. The performance penalty cost (PPC) that will be paid by the algorithm is

kept to minimum using the following techiques:

a. The PPC will never be paid (i.e deferred) until the program exceeds a

certain threshold in virtual address space, i.e., the heap size grows

beyond a certain limit.

b. The algorithm consists of modular parts allowing optimal future

implementations to these modules which reduce the overall PPC, as a

result.

c. Parallel threads may be utilized as a tool for further performance

enhancement (See Chapter 5)

In the next sub-sections, we present our approach for memory leak

detection. In this chapter, we present various performance metrics such as

program crash delay, false positives, false negatives, and telemetry. The chapter

will end with some conclusions.

www.manaraa.com

35

3.1 Memory Leak Detection (MLD) Using Aging in Physical Memory

Once a chunk of memory is leaked, it will no longer be accessed by the

application program. Hence, a leaky memory will begin to age. Aging, in this

context, is related to the time a piece of memory remains untouched. Memory

aging can then be used to detect leakage. In classic computer systems,

memory allocation is done both at virtual and physical levels. A memory leakage

in the virtual space will render the corresponding mapped physical memory in a

“page-out status”. A page-out status makes a page in the physical memory a target

for the replacement policy. Going backward, a paged out page can correspond,

but not necessarily, to a leaked chunk in the virtual space. The age of a physical

page is the time elapsed since the page is swapped out of the physical to the virtual

space. More precisely, the age begins to accumulate from the time a page is

marked by the replacement policy as a target for replacement. Note that a page

may remain in the physical space for a long time after it has been marked as a

replaceable page.

www.manaraa.com

36

The aging in the virtual address space for an application is correspondent

to a similar aging in the physical address space. Memory aging is measured as a

time elapsed since i) the last dereference to the memory chunk in the heap by one

of its pointers, ii) a page was marked for replacement in the physical space, or iii)

a page was last swapped to virtual space. Thus, the memory detection mechanism

can rely on either the virtual space or physical space. A memory chunk will be

considered a candidate leak if the age of its corresponding memory page exceeds

a certain limit (threshold). This threshold can be either user defined or tuned by a

telemetry tool.

The memory leak detection (MLD) algorithm can rely on memory aging

either in the virtual or physical space. Aging in the virtual space is more accurate

www.manaraa.com

37

than aging in the physical space. The physical space is much smaller than

the virtual address space, and pages can age more quickly, and become

candidates for replacement. Also, aging in the physical space depends on the

replacement policy used by the OS. Different replacement policies (LRU, FIFO,

OPT, LFU(Silberschatz et al,2005)) select different pages for replacement at any

given time. Furthermore, pages in physical memory may become candidates for

replacement because of the behavior of other processes, given that global

replacement policies are used.

On the other hand, aging in the virtual space is process dependent. A chunk

of memory continues to age as long as no reference is made to this chunk. The

main problem of tracing the age of memory pieces in the virtual space is the

overhead associated with keeping track of the age and scanning for older chunks

in memory. This is particularly true when the list of allocated memory is relatively

large. Using the physical memory allocation for leak detection has the advantage

of hardware support in most virtual memory systems, and thus the detection time

overhead can be negligible.

Another problem with using physical memory is that a page in physical

memory may correspond to several chunks in the virtual space. Several chunks,

whose size is smaller than a page, are mapped into one physical page. Hence, if

only one chunk in the virtual space is active, while the other chunks have leaked,

then the corresponding physical page remains active and the leaks in that page

will not be detected. Using a smaller page size can relax this problem,

www.manaraa.com

38

 but does not resolve it. Further optimization can be applied to relax this

problem. However, the necessity of applying optimizations will be dictated by the

experimental measurement of how serious this problem is.

In order to have a more accurate detection algorithm, we propose a new

algorithm that reflects both the physical and virtual behavior of memory allocation.

We will benefit from the hardware support available for tracking physical pages in

real memory. We list the MLD algorithm pseudo code next. After that, we explain

it block by block.

www.manaraa.com

39

3.2 MLD Algorithm Pseudo Code

Figure 5 shows the pseudo code for MLD algorithm

For every process that wants to exploit MLD algorithm //this process becomes a monitored process
Begin

Initialize()
 Perform the following functions concurrently

 Bookkeeping()
 Run the Sweeper() if it is started

End
Initialize () {
 Set Heap_Size_Threshold to input value

Set Sweeper_Sleep_Time to input value
Set Page_Age_Threshold to initial input value

}
Bookkeeping(){

Reset time stamp field for any new entry added to page table.
For every victim page selected from the mapped physical space

Time stamp the corresponding page in the virtual address space by setting the time
-stamp field in the page table to the current time.

For every paged-in page
 Reset the Time stamp field.
}
Sweeper(){
 //use conservative approach for garbage collection
 while(true){
 For each page in the page table of the monitored process{
 If isLeakyPage(page_number, current_time, Page_Age_Threshold (τ)){
 Mark all reachable chunks from (static, stack, and registers) as live objects
 //use conservative approach//consider all a like pointers as pointers
 Garbage Collect unreachable chunks(dead)
 Remove Garbage Collected chunks entries from mallocTable

 }
 }
 sleep(Sweeper_Sleep_Time)
 }
}
bool isleakyPage (page_number, current_time, Page_Age_Threshold (τ)) {
 if (time stamp of page_number>0){

 Age = current time – time stamp of page
 If Age > Page_Age_Threshold(τ) then return true

 }
 Return false
}
//Sweeper() process is started by the memory allocation function
//MallocTable , a table that tracks allocations and deallocations, is maintained by memory allocation
function

FIGURE 5: THE PSEUDO CODE FOR MLD ALGORITHM

www.manaraa.com

40

3.3 MLD Algorithm Explanation

In this sub section, we explain the MLD algorithm and provide guidelines

that facilitate its implementation.

Figure 6 represents the block diagram of MLD algorithm. The diagram

shows the major components required to implement the algorithm. Next, we

describe these components and explain how the algorithm works.

www.manaraa.com

41

 TS

 CurrentTime

 0

RAM Page Table

(a) bookkeeping

void *malloc(size_t size){
 void * returnPtr;// pointer to newly allocated object

 The original code of malloc is left unchanged

 If (Current_Heap_Max_Size > Heap_Size_Threshold){
 Start the sweeper ()// if it is not already started
 }

MallocTable.add(retrunPtr, size,0); //0 assume unreachable(dead)
return returnPtr
}

(c) memory allocation

Malloc Table

Begin
Address

Size Mark Flag

void free(void *s){
//original code the same
mallocTable.remove(*s)
}

(d) memory deallocation

FIGURE 6: FLOW DIAGRAM FOR MLD ALGORITHM

(b)Sweeper()
Iterate through page table

to find aging pages (every

sweeper-sleep time)

For every aging page:
- Set reachable objects flag

- GC unreachable objects

- Remove GCed objects from Table

Page out

Page in

http://www.phim.unibe.ch/comp_doc/c_manual/C/SYNTAX/void.html

www.manaraa.com

42

3.3.1 MLD Main Function

For every process that wants to exploit MLD algorithm //this process becomes
monitored process
Begin

Initialize()
 Perform the following functions concurrently

 Bookkeeping()
 Run the Sweeper() if it is started

End

FIGURE 7: MLD ALGORITHM - MAIN FUNCTION

The “main function” of the algorithm, figure 7, keeps iterating over monitored

processes. The monitored processes are the processes chosen by the operating

system or the system administrator to exploit MLD. A telemetry tool will be very

helpful in controlling and monitoring such processes. Choosing a subset of all

processes to be monitored reduces the performance cost of MLD to minimum. As

a rule of thumb, there are some types of processes that can benefit from MLD such

as: long live processes and critical applications that can not tolerate crashes. In

theory, MLD can be used to solve memory leak in any process. However, there is

no meaning to pay the cost of MLD in a short term application, an uncritical

application, or applications that are proven not to have memory leak related

problems.

The “main function” of MLD algorithm initiates the initialization function

which we will explain next. After initialization, the “main function” starts the

bookkeeping() function and the sweeper() function and continues these functions

for ever. Note that the sweeper must have been started aleady before it can be

used by the “main function”.

www.manaraa.com

43

3.3.2 Initialization

Initialize () {
 Set Heap_Size_Threshold to input value

Set Sweeper_Sleep_Time to input value
Set Page_Age_Threshold to initial input value

}
FIGURE 8: MLD ALGORITHM-INITIALIZE() FUNCTION

The initialize() function, figure 8, initializes some important parameters that

affect the behavior of the MLD algorithm. These parameters are:

Heap_Size_Threshold: The sweeper function will start sweeping once the

size of the heap exceeds this threshold value. For example, Heap_Size_Threshold

can be set to 80% or 90% of the maximum possible heap size. This parameter is

useful to keep the cost of memory lead detection and recovery as low as possible.

Note that memory leak is not a problem in its own. It becomes a threat to the

running application only when a malloc function fails to allocate memory due to

memory unavailability. Hence, we propose to run the sweeping part of the

algorithm, which is responsible, for recovering leaky objects, only when the heap

size has approached its maximum limit.

Sweeper_Sleep_Time: the time in milliseconds a sweeper will wait

between any two successive scans. The smaller the value of Sweeper_Sleep_time

the more overhead the sweeper will generate on operating system and vice versa.

Page_Age_Threshold: the age value above which a page will be

considered to have a potential leak. Page_Age_Threshold is a tunable parameter.

One simple way to dynamically calculate the average age of the

Page_Age_Threshold:

www.manaraa.com

44

n

iAgepage

ThresholdAgePage

n

i

)(_
1

Where n is the number of pages available in the virtual address space. A

telemetry tool will be very handy in initializing and tuning such parameters.

3.3.3 Bookkeeping

Bookkeeping(){
Reset time stamp field (TS) for any new entry added to page table.
For every victim page selected from the mapped physical space

Time stamp the corresponding page in the virtual address space
by setting the time - stamp field in the page table to the current
time.

For every paged-in page
 Reset the Time stamp field.
}

FIGURE 9: MLD ALGORITHM-BOOKKEEPING() FUNCTION

The major task of bookkeeping() function shown in figure 9 and figure 6(a)

is to timestamp a page whenever it is selected as a victim by the page out

replacement algorithm. This time will be used to calculate the time a page remains

out of physical memory, i.e., the age of a page.

The page table is the data structure that stores the mapping between the

virtual addresses and the physical addresses. In a computer architecture where

the word size is 32 bits, we are able to address 232 different virtual locations. If the

page size is 1 KB, then the page table has 222 entries.

To facilitate the implementation of the aging algorithm for leak detection and

the bookkeeping() functionality, we augment the page table in the virtual memory

system with a new attribute that we call Time Stamp (TS) as shown in table 1. TS

Attribute is marked with “*” to indicate that it is a new entry in the page

www.manaraa.com

45

table. The TS field is initialized to zero each time a new page entry is added

to a page table. When a page is swapped back into the physical space, TS is set

to zero also.

Presence

Bit(PB)

Frame

no.(FN)

Secondary

Storage

Address (SSA)

Dirty

Bit

(Dbit)

* Time

Stamp

(TS)

Table 1: Augmented Page Table
Where:

Presence bit (sometimes called valid-invalid bit)(PB): PB indicates whether

the physical page is in main memory or must be fetched from secondary

storage (a page fault). When this bit is set to “valid”, it indicates that the

associated page is both legal (in the process’s logical address space) and

in memory. If the bit is set to “invalid”, it indicates that the page is either not

valid (not in the process’s address space), or is valid but is currently on disk.

Illegal addresses are trapped by using the valid-invalid bit.

Frame number(FN): FN indicates the physical base address of a frame.

Secondary storage address (SSA): SSA is used to locate the data on

disk.

www.manaraa.com

46

Dirty (modify) bit (Dbit): Dbit is set whenever any word or byte in the page

is written into. When a page is selected for replacement, the dirty bit is

examined. If it is set, it must be written back to disk. If it is not set, then the

page has not been modified and it can be overwritten without writing it to

disk.

Time Stamp* (TS): Time stamp attribute added to page table to facilitate

bookkeeping functionality of the MLD.

The best place to implement the bookkeeping functionality is in the page

replacement policy. Pages become candidate for replacement in the physical

memory according to the replacement policy used(LRU, FIFO, LFU,OPT

(Silberschatz et al,2005)). Irrespective of the replacement policy used, once a

page is selected as a victim page, the TS of the corresponding page in the virtual

address space is set to the current time. For any paged-in page the TS field is

reset. The TS of zero value means the page is new and no longer considered an

aged page.

3.3.4 Memory Allocation and Deallocation Functions

In order to implement the MLD algorithm, we suggest changes to memory

allocation and deallocation functions such as malloc(), new() , free(), dispose() and

delete() functions. We show the changes to malloc() and free() in the next two sub

sections. Changes to other allocation/deallocation functions are the same, and

hence we do not provide a description for all funcitons. The interface to the malloc()

and free() functions is left intact. This means we do not need to

www.manaraa.com

47

 make significant changes to available user applications. Changes will be

only implemented in memory allocation and deallocation functions. Next, we

present these changes in malloc() and free() as an example.

3.3.4.1 Malloc ()

Figure 10 shows malloc() after being modified to accommodate the MLD

algorithm. The original code of malloc() is left as is. However, the malloc() function

execution incorporates two major changes just before it returns a pointer to the

newly allocated memory chunk. The first change is made to defer paying the

performance penalty cost, The heap size is checked by malloc(). If it has reached

a predetermined threshold value, then the Sweeper() is started.. Once the

threshold limit is reached this means the application is about to reach the maximum

size of the heap and the application state becomes critical. Applications with heaps

that do not reach the Heap_Size_Threshold will never pay the cost of sweeping

and therefore the cost incurred is kept to minimum.

void *malloc(size_t size){
 void * returnPtr;// pointer to newly allocated object
 The original code of malloc is left unchanged
// This piece of code is intended to monitor the execution of the Sweeper().
 If (Current_Heap_Max_Size > Heap_Size_Threshold){
 Start The sweeper()// if it is not already started
 }
//This piece of code is intended to maintain a table structure for
//allocations/deallocations
MallocTable.add(retrunPtr, size,0); //0 assume unreachable(dead)
return returnPtr
}

FIGURE 10: MLD ALGORITHM – MALLOC() FUNCTION

www.manaraa.com

48

The second change made to the malloc() function execution is intended to

maintain a new table data structure. We call this table MallocTable and it is shown

in Table 2.

 Begin

Address

Size Mark Flag

Table 2: MallocTable, Memory allocation table
 For any memory chunk created by malloc(), a corresponding entry will

show up in the MallocTable. This entry will contain the starting address of the

chunk in the heap, the chunk size, and a mark flag. Reachable objects are

identified by scanning the static stack, and registers. The mark flag is set by the

sweeper if a chunk is reachable and remains zero if it is not. All entries with mark

flag reset are unreachable objects and have to be garbage collected.

3.3.4.2 free ()

The free() function is shown in figure 11 and figure 6(b). The original code

of free() function remains the same. A single change is made to the free() function

execution. Just before the free() function exits, it removes the freed object from the

MallocTable.

void free(void *s){
//original code the same
mallocTable.remove(*s)
}

FIGURE 11: MLD ALGORITHM- FREE() FUNCTION

http://www.phim.unibe.ch/comp_doc/c_manual/C/SYNTAX/void.html

www.manaraa.com

49

3.3.5 Memory Leak Detection and Sweeping

The main strength of the detection algorithm is that it utilizes the information

provided by the virtual memory manager to identify the age of a memory chunk in

the virtual memory using physical memory allocation information.

There is a certain category of memory allocations, which can be considered

by the compiler and/or the user as non-leaky no matter how long they remain in

memory, i.e., independent of age. Typical examples are dictionaries, trap and

exception handling objects, and other libraries. Such objects can be locked

permanently until the program exits. All other leaks are treated according to the

MLD algorithm. Next, we explain memory leak detection and sweeping.

3.3.5.1 Memory Leak Detection

bool isleakyPage (page_number, current_time, Page_Age_Threshold (τ)) {
 if (time stamp of page_number>0){
 Age = current time – time stamp of page
 If Age > Page_Age_Threshold(τ) then return true
 }
 Return false }
}

FIGURE 12: MLD ALGORITHM- ISLEAKYPAGE() - LEAK DETECTION FUNCTION

According to the leak detection function, isLeakyPage(), shown in figure 12,

a page is considered leaky if its page age is greater than the Page_Age_Threshold,

where the page age is equal to the value of current time minus page time stamp.

The time stamp is entered into the corresponding page table entry (TS) when a

page is selected for replacement by the page replacement policy. A leaky page, in

this context, may or may not contain a real

www.manaraa.com

50

 leaky object; thus it is considered as a candidate for leak. Since a leaky

page has not been used in memory for a relatively long time, it is likely that it has

some unreachable objects (real leak), but this is not necessary. If the time stamp

is zero this means that the page is active and available in physical memory.

3.3.5.2 Memory Leak Sweeping

Sweeper(){
 //use conservative approach for garbage collection
 while(true){
 For each page in the page table for the monitored process{
 If isLeakyPage(page_number, current_time,
Page_Age_Threshold (τ)){
 Mark all reachable chunks from (static, stack, and
registers) as live objects
 //use conservative approach//consider all a like pointers
as pointers
 GC unreachable chunks(dead)
 Remove GCed chunks entries from mallocTable

 }
 }
 sleep(Sweeper_Sleep_Time)

FIGURE 13: MLD ALGORITHM- SWEEPER() – LEAK SWEEPING FUNCTION

The Sweeper(), figures 13 and 6(b), is a process started by the malloc() function

when the heap size grows to a point close to its maximum size. The main function

of the Sweeper() is to remove unreachable objects from aged pages, given that

the aged page is found to include a leak. The Sweeper() starts sweeping for the

application that exceeds the Heap_Size_Threshold. The Sweeper() iterates

through the page table to find out potential leaky pages of the target application

every Sweeper_Sleep_Time. The pages identified by the Sweepr() at this level are

the ones with potential leaks. In order to determine

www.manaraa.com

51

 which page actually contains a real leak, the Sweeper() performs another function.

For each page in the set of potential leaky pages, the sweeper starts scanning

from the roots (static, stack , and registers) to find out if this page has unreachable

objects. Unreachable chunks in every identified leaky page are deleted (garbage

collected). Note that the scanner does not have to scan across all the heap objects

which may be very large. This has always been the main disadvantage of classic

garbage collection tools. In our approach, the Sweeper() first identifies the potential

leak locations, and then performs the scanning against these locations only. This

way, the cost of finding the leaky objects is drastically reduced.

3.4 Crash Delay

By removing unreachable objects from the heap, the sweeper() will save

additional new room in the heap for future allocations. This additional room will

make the target application live longer and delay possible crash due to lack of

memory. However, for several reasons, the Sweeper() may not prevent program

crashing due to lack of memory. Among these reasons are: 1) setting

Heap_Size_Threshold to a relatively large value which delays the startup of the

Sweeper(), 2) setting the Sweeper_Sleep_Time to a large value that makes the

sweeper() not able to cope with the speed of the allocation operations being made

by target application. Allocation operations are process dependent, and 3) Setting

the Page_Age_Threshold to a relatively large value which makes it more difficult

for the Sweeper() to identify enough leaky pages. In fact, the Sweeper()

www.manaraa.com

52

 will fail to identify any single leaky page if the Page_Age_Threshold is

extremely large. In case the Sweeper() fails to ensure that the required space is

available on the heap to satisfy allocation requests, the target application will crash.

Crash prevention is one of the major advantages of MLD algorithm if the

sweeper() is able to remove unreachable objects and make enough room for new

allocations. In the worst case, the MLD algorithm delays the crash if it is imminent

and makes application live longer. The ML-VMS (Chapter 4) along with a memory

leak detection and recovery algorithm will be able to completely prevent crashing

as the requested size for allocation will always be available.

3.5 False Positives

One of the main problems in memory leak detection tools is the potential

error known as “false positives”. In other words, a detected leak is not a real leak.

The object identified as a potential leak gets dereferenced after the system has

given up on it! Referencing an object after it has been removed from memory, i.e.,

deallocated, causes incorrect results or the program to crash altogether. False

positives can not be tolerated in critical mission applications. Hence, we have to

be careful when dealing with false positives.

MLD algorithm is a conservative algorithm. It produces zero false positives.

The MLD starts scanning from the roots (static, stack, and registers) searching for

reachable objects. Once reachable objects are identified, the remaining are

hundred percent unreachable and can not be false positive.

www.manaraa.com

53

 Without the scanning part of the algorithm, the MLD produces false

positives. However, the rate of false positives can be controlled using the

Page_Age_Threshold. Increasing this threshold value will reduce the rate of false

positives. For some noncritical applications, where the program crash and restart

does not cause a serious penalty to the users, the MLD can very well be used

without the scanning part.

3.6 False Negatives

False negatives are leaky chunks that go undetected. Note that a page

allocated to physical memory may consist of one or more memory objects in the

heap virtual space. If at least one of these objects remains active, then the

corresponding page will never age beyond the age threshold. As a result, the other

objects allocated to the same page will go undetected if they become leaky. This

phenomenon will result in false negatives, i.e., undetected leaky objects.

MLD algorithm does not totally remove false negatives, but it can minimize

the number of false negatives by decreasing the Page_Age_Threshold.

Decreasing Page_Age_Threshold will make MLD identify more leaky objects.

However, this operation will increase the cost of the sweeper() that will sweep a

relatively large number of potential leaky pages. So there is a trade off. After all,

several numbers of false negatives can be tolerated since the MLD will help the

application to keep going.

Another way is to choose a smaller page size. In this case, the number of

independent objects allocated to the same page will be reduced. However, there

www.manaraa.com

54

 are some disadvantages for choosing smaller page sizes. One way of

getting around this problem is to use the concept of dynamic page size setting,

where pages will have different sizes, and each page size is determined based on

the memory objects sizes. Smaller objects will be allocated to smaller page sizes,

while larger objects will be allocated to larger page sizes. This concept will be the

subject of future research.

3.7 Memory Leaks and Telemetry

The main concept behind memory leak detection is the aging of objects.

The telemetry subsystem may be used to monitor the aging of objects. The age

monitor reports the objects whose age exceeds a certain threshold value. This

process allows the user more control over memory leaks. The report includes the

memory object, the owner, the age, and recommendation on how to deal with the

object.

Some benefits that can be gained by a telemetry tool:

 Ability to select which processes will exploit the MLD algorithm and

which will not.

 Initialize and tune MLD parameters such as: Heap_Size_Threshold,

Sweeper_Sleep_Time, and Page_Age_Threshold for each

monitored proecess.

 Create and monitor a sweeper for each monitored process.

 Monitor heap limits, false positives, false negatives, and other

performance measures

www.manaraa.com

55

 Allow the user to discover potential leaky objects and make

appropriate corrections in the source code.

3.8 Conclusion

This chapter provides a full description of a new approach for memory leak

detection (MLD) algorithm using aging in physical memory. This algorithm reflects

both the physical and virtual behavior of memory allocation and benefits from the

hardware support available for tracking physical pages in real memory.

 The MLD is shown to follow a conservative approach in removing

unreachable objects. The MLD is not able to deal with stale objects at run time

because there is no way to tell if these objects will be referenced in the future by a

running program. The current structure of virtual memory system and dynamic

allocation prevents the availability of such a complete run-time solution.

Applications that exploit this algorithm are able to live longer than the applications

without it. The false negatives and overhead depend on some input parameters

like Page_Age_Threshold and system parameters like Page_Size which suggest

a need for a telemetry tool. In the next chapter, we provide a complete run-time

solution. In chapter 5, we show the effect of tuning the input parameters on

performance and we provide performance evaluation results

www.manaraa.com

56

Chapter Four
Multi-Layer Virtual Memory System (ML-VMS)

4.0 Introduction

In the previous chapter, we showed that the current structure of virtual

memory system and dynamic allocation prevents the availability of a complete run-

time solution for memory leak problem.

In this chapter, we propose to reorganize the virtual memory system into a

Multi-Layer Virtual Memory System (ML-VMS). The ML-VMS is a novel structure

that reorganizes the virtual memory system and dynamic memory management. A

new algorithm for memory leak detection and recovery (MLDR) is presented based

on this new structure. The MLDR still uses the physical memory aging as done by

the MLD, however, it will utilize the proposed new ML-VMS. We show how the ML-

VMS along with the MLDR allow for efficient resolution of memory leak problem.

The idea of the ML-VMS emerged out of the original MLD algorithm. Initially,

the MLD algorithm, based on aging, was supposed to deallocate all objects in a

page whose age exceeds the given threshold. However, to account for false

positives, it was suggested that objects can be kept on the hard disk, while

removed from the heap, in case they get dereferenced (false positives). The main

challenge was to be able to recover the false positives from the hard disk. Several

approaches were discussed and addressed, including the use of hardware traps,

the modifications of addresses of freed objects, and others

www.manaraa.com

57

. However, careful investigation of this challenge reveals that the main issue

is to establish a mapping between the heap storage and the global disk storage

where potential leaky obects can be stored.

Moreover, the real problem of leaks is that the heap storage has a physical limit

imposed by the size of the address words (32 bits in 32-bit machines and 64 bits

in 64-bit machines). Memory leaks may exhaust the heap size, although the

application may not in reality need that much space. As such, the ability to move

objects from the heap and store them in the much larger disk space (unlimited

space) and recover them when needed will allow a greedy MLD algorithm to

dispose of potential leaks without the fear of a crash whenever these objects are

derferenced. Also, an application program which requires very large memory

space (larger than the 32-bit address space) will be able to run without facing “out

of memory” failure mode. Of course, with 64-bit machines this problem may not be

as serious. However, our experience with application development is that users

will tend to exhaust computer resources as soon as they become available. In this

chaper, we will present the ML-VMS approach which provides a solution to this

challenge.

While the MLD is not able to deal with stale objects the MLDR provides a

complete run-time solution for memory leak problem. A simulation model will be

used, in chapter 5, to validate both of the ML-VMS and MLDR and provide a proof

of concept. We also provide some guidelines that facilitate the

www.manaraa.com

58

implementation of this new structure (ML_VMS) and MLDR.

This ML-VMS along with MLDR algorithm provides the following

contributions:

1. Deals with both unreachable and useless (stale) objects.

2. Handles the problem of false positives. If a false positive object is deleted

from the heap and referenced later by the application the deleted object is

recovered.

3. Provides run-time solution for memory leak detection and recovery whereas

most of previous approaches either detect memory leak in development

environment or remove only unreachable objects in run-time environment

as performed by garbage collectors.

4. Prevents programs from crashing by guaranteeing that space on the virtual

memory is always available by moving potential leaky objects to disk that

presumably has an unlimited space.

5. Although there is a performance penalty cost (PPC) that will be paid by the

algorithm, this penalty is kept to minimum by using the following techniques:

a. The PPC will never be paid (i.e deferred) until either the program

exceeds a certain threshold in virtual address space or there is no

available memory to be allocated and the application is about to crash.

www.manaraa.com

59

b. The algorithm consists of modular parts allowing optimal future

implementations to these modules which reduce the overall PPC, as a

result.

c. Aging in the virtual space is detected based on aging in the physical

space, thus allowing the algorithm to utilize the hardware available for

virtual memory organization.

d. The algorithm utilizes tunable parameters that reduce the cost to the

minimum.

e. Parallel programming is suggested, as shown in chapter 5, to provide

more enhancements in performance.

We describe the structure of the new ML-VMS and show how the ML-VMS

allows for efficient resolution of memory leak problem through the memory leak

detection and recovery (MLDR) algorithm.

4.1 Multi-Layer Virtual Memory System (ML-VMS)

The ML-VMS is constructed by adding an additional layer to the virtual

memory system. This layer introduces a new data structure that we call a virtual

heap table (VHT). The VHT is shown in Table 3. The VHT contains an entry for

each allocated memory chunk. The memory chunk can be located on the heap and

then VHT contains its virtual address or it can be located on disk and the VHT

contains its disk address.

www.manaraa.com

60

Virtual Heap

Table Index

(VHTI)

Presence Bit

(PB)

Virtual

Address (VA)

Size Disk Address

(DA)

0

1

Table 3: Virtual Heap Table(VHT)
Where:

Virtual Heap Table Index (VHTI): is an index to the virtual heap table. This entry

does not have to be stored in the table. Each entry in the table is identified by this

index.

Presence Bit (PB): PB tells whether the object is on the virtual address space or

on the disk. If the PB is set, it indicates the object is allocated in the given virtual

address space entry. Otherwise; the object was deallocated from the virtual

address space by the MLDR algorithm and it (the object) is currently available on

disk in the given disk address entry. The default value of PB is one. i.e the object

is available on the virtual address space.

Virtual Address (VA): is an entry for the base virtual address of an object. This

entry has meaning only when the PB is set.

Size: is an entry that contains the size of the memory chunk (object).

Disk address (DA): contains the address at which the object was backed up

before being deallocated by the MLDR algorithm. This entry has meaning only

when the PB is zero.

www.manaraa.com

61

4.2 Address Resolution

 Address resolution is the process of address translation from a virtual

address to a physical address. In the ML-VMS organization, there are two levels

of address translation. One level is required to find the virtual address of an object.

The second level is to find the physical address in the physical memory. Address

resolution in the new ML-VMS is illustrated in figure 14. The figure shows how a

VHT reference (VHTR) is translated into a physical address.

Virtual Heap

Table Index

(VHTI)

Presence Bit

(PB)

Virtual Address

(VA)

Size Disk Address

(DA)

0

Virtual Address

Virtual page number offset

PB FN SSA DB TS

Physical page number Offset

Physical Address

FIGURE 14: ADDRESS RESOLUTION IN ML-VMS - MAPPING VHTR INTO PHYSICAL ADDRESSES

TLB

Physical address

T
ra

n
sl

at
io

n

VHT Reference

www.manaraa.com

62

According to the ML-VMS, programs now use virtual heap table references

(VHTR) instead of virtual addresses. Address resolution is started with a valid

VHTR. This reference is an index to the VHT that we call virtual heap table index

(VHTI). If the PB of the VHTI is set, address resolution proceeds normally with the

VA that is associated with the VHTI. Otherwise; the object is on disk at a given DA

and it has to be recovered (4.3.4) and the address resolution must be restarted.

Next, we list the memory leak detection and recovery algorithm (MLDR) based on

this ML-VMS.

4.3 The MLDR Algorithm Based on the ML-VMS

The MLDR algorithm contains the following modules: memory allocation,

memory deallocation, ML-VMS with aging, and object recovery. We define and

present these modules respectively.

4.3.1 Memory Allocation

 Memory allocation proceeds as follows:

a. Find a free memory chunk and return its virtual address (VA).

b. Place the VA in a new entry in the VHT.

c. Set the PB

d. Return the corresponding virtual heap table index (VHTI) as a virtual heap

table reference (VHTR) to the calling program.

www.manaraa.com

63

e.

4.3.2 Memory Deallocation

Memory deallocation proceeds as follows:

a. If the PB in the VHT is reset then the VHTR belongs to an object that is

freed earlier. Exit memory Deallocation.

b. Else translate the given VHTR of a memory chunk into a VA

c. Proceed normally to deallocate the given VA in the usual deallocatin

process.

d. Reset the PB

4.3.3 ML-VMS and Aging

The ML-VMS facilitates the implementation of the aging algorithm and hides

the memory leak problem.

If the aging algorithm decides that a given page is aging and must be freed, it

performs the following steps:

a) Use the number of the aging page as a search key to look up all of page’s

corresponding aging memory chunks in the VHT.

b) For each aging chunk CHi

1) Backup CHi to disk if it is reachable (useless or stale)

2) Set the disk address (DA) of CHi in the VHT and reset the

corresponding PB if it is reachable and remove the VHT entry if it is not

reachable.

www.manaraa.com

64

3)

4) Deallocate CHi from the Heap whether it is reachable or not.

4.3.4 Object Recovery

a. Find a free memory chunk and return its virtual address (VA)

b. Copy the object from disk to the new located object

c. set the PB

d. set the virtual address entry in the VHT to the new VA

e. Remove the recovered chunk from disk.

4.4 MLDR algorithm block diagram based on ML-VMS

The MLDR algorithm block diagram is shown in figure 15.

 TS

 CurrentTime

 0

RAM Page Table

(a) bookkeeping

www.manaraa.com

65

www.manaraa.com

66

void *malloc(size_t size){
 void * returnPtr;// pointer to newly allocated object
 long int VHTI;//unique identifier

 The original code of malloc is left unchanged

 If (Current_Heap_Max_Size > Heap_Size_Threshold){
 Start The sweeper() //if it is not already started
 }
VHTI=getIndex()

HeapTable.add(VHTI,1,retrunPtr, size,0);

returnVHTI
}

(c) memory allocation

Heap Table

Virtual

Heap Table

Index

(VHTI)

Presence

Bit (PB)

Virtual

Address

(VA)

Size Disk

Address

(DA)

0

1

www.manaraa.com

67

FIGURE 15 : THE BLOCK DIAGRAM OF MLDR ALGORITHM

4.5 MLDR Explanation

In this section, we explain the main modules of the algorithm along with

enough necessary examples. The aging concept is used in both of the MLD

(chapter 3) and the MLDR (chapter 4). Readers should refer to chapter 3 on details

about aging in physical memory space if necessary. The following modules, that

are explained next, are related to the MLDR.

4.5.1 Memory Allocation Module Explanation

Memory allocation module proceeds as shown in figure 16.

a) Find a free memory chunk and return its virtual address (VA).

b) Place the VA in a new entry in the VHT.

c) Set the PB

d) Return the corresponding virtual heap table index (VHTI) as a virtual heap

table reference (VHTR) to the calling program.

FIGURE 16: MEMORY ALLOCATION FOR MLDR

The memory allocation process starts by finding a free chunk in the heap

and returning its virtual address (VA). This VA is placed as a new entry in the VHT.

The PB is set to indicate that this chunk is available in the virtual address space.

The VHTI is returned to the calling program. For example, after an application

executes the statement:

x = malloc(50);

www.manaraa.com

68

the VHT will have a new entry as follows:

(VHTI)

Presence Bit

(PB)

Virtual Address (VA) Size Disk Address

(DA)

0 1 0x8012a67 50 0

We assume this allocation was the first allocation in the program. PB is set.

VA=0x8012a67 which is the address of the chunk in the heap. The value of x in

the program now contains the VHTI=0 not 0x8012a67 as usually done by current

virtual memory systems.

 Figure 17 shows the suggested changes made to the malloc() function in

order to implement the memory allocation module of the MLDR.

void *malloc(size_t size){

 void * returnPtr;// pointer to newly allocated object

 long int VHTI;//unique identifier

 The original code of malloc is left unchanged

 If (Current_Heap_Max_Size > Heap_Size_Threshold){

 Start The sweeper() //if it is not already started

 }

VHTI=getIndex()

HeapTable.add(VHTI,1,retrunPtr, size,0);

returnVHTI

}

FIGURE 17: MALLOC() FUNCTION FOR THE MLDR

www.manaraa.com

69

Most of the original code for malloc() including the malloc() interface is left

intact so there will be no need to make any changes in the user programs.

There are two issues to mention. The first is that, as we discussed in the MLD, the

malloc() starts the sweeper() when the heap size exceeds a certain threshold. The

latter is that the malloc() adds the VA to the heap table and returns the VHTI of

that entry. Each added item will have the PB set by default, the VA, the size and

null value for the DA.

4.5.2 Memory Deallocation Module Explanation

Memory deallocation proceeds as follows:

a) If the PB in the VHT is reset then the VHTR belongs to an object that is

freed earlier. Exit memory Deallocation.

b) Else translate the given VHTR of a memory chunk into a VA

c) Proceed normally to deallocate the given VA in the usual deallocatin

process.

d) Reset the PB

FIGURE 18: MEMORY DEALLOCATION OF MLDR

Memory deallocation module, figure 18, starts by passing a VHTR. If the PB

of that reference is reset then this is an attempt to free an already freed chunk. In

this case, the deallocation module exits. Otherwise, the VHTR is translated into a

VA. Then, this VA is freed from the heap. And the PB is reset. For example, after

an application executes the statement:

www.manaraa.com

70

free(x); //and x has the value of VHTR= 0.

the VHT will be as follows:

(VHTI)

Presence Bit

(PB)

Virtual Address (VA) Size Disk Address

(DA)

0 0 0x8012a67 50 0

The free() function translates the VHTR of x =0 to the VA=0x8012a67. This

VA is deallocated from the heap and the PB is reset to indicate that the VA in this

entry no longer exists. Any other future attempt to free this object again by calling

free(); say free(y) where y was set to x. The module will find that the PB is reset

and exits. This result is important and shows how the ML-VMS solves the problem

of aliasing and dangling pointers. This is outside the scope of our Dissertation but

is mentioned for future research.

www.manaraa.com

71

4.5.3 MLDR with Aging Module Explanation

If the aging algorithm decides that a given page is aging and must be freed,

it performs the following steps:

a) Use the number of the aging page as a search key to look up all of page’s

corresponding aging memory chunks in the VHT.

b) For each aging chunk CHi

1) Backup CHi to disk if it is reachable (useless or stale)

2) Set the disk address (DA) of CHi in the VHT and reset the

corresponding PB if it is reachable and remove the VHT entry if it is not

reachable.

3) Deallocate CHi from the Heap whether it is reachable or not.

FIGURE 19: MLDR WITH AGING

www.manaraa.com

72

The aging in physical memory space is used to detect aging in virtual

address space. This concept was discussed thoroughly in chapter 3. Here, we

explain how it is related to the MLDR and the ML-VMS, figure 19, using the

following four-step example.

Step one:
We start the example by presenting a block of code, figure 20, shown next.

In this example, xPtr, yPtr, and zPtr point to chunks of sizes 40, 60, and 20

respectively. Assume that all of these pointers are created and mapped to page 1

on the page table.

char* xPtr, *yPtr, *zPtr;

xPtr = (char *) malloc(40);/* allocate memory */

yPtr = (char *) malloc(60); /* allocate memory */

zPtr = (char *) malloc(20); /* allocate memory */

FIGURE 20: A BLOCK OF CODE FOR THE MLDR EXAMPLE

Step two:
After allocating xPtr, yPtr, and zPtr according to memory allocation module of the

MLDR, we get the following snapshot of the VHT:

(VHTI) Presence Bit

(PB)

Virtual Address (VA) Size Disk Address

(DA)

… ….. … ….

120 1 0x8012c00 40 0

121 1 0x8013d00 60 0

122 1 0x8018e11 20 0

… … … … ….

Later on, suppose at time T6 we take a horizontal slice of the page table that

we show next.

www.manaraa.com

73

 Presence

Bit(PB)

Frame

no.(FN)

Dirty

Bit

(DB)

* Time

Stamp

(TS)

Page 0

.... … … ….

Page 1

1 12 0 T1

Table 4: A horizontal snapshot slice of the augmented page table at time (t6)

The bookkeeping() function of the aging algorithm has already time-stamped

page 1 with T1. T1 represents the last time page 1 was used in the physical

memory.

Step three:

The aging algorithm will decide that page 1 is aging because its age=T6-T1

is greater than a threshold value. The aging algorithm proceeds in looking up all of

the pages's corresponding chunks in the VHT. These chunks in the aging page are

those pointed by VHTI= 120, 121 and 122.

Step four:

Now, we perform the steps 1 through 3 of the aging model on each element:

120, 121, and 122. Assume that entry 120 is still reachable by the application

program and entries 121,122 are not. Then after executing the aging module we

will have the following snap shot of the VHT.

www.manaraa.com

74

(VHTI) Presence Bit

(PB)

Virtual Address (VA) Size Disk Address

(DA)

… ….. … ….

120 0 0x8012c00 40 0xdab678ca

… … … … ….

All entries were deallocated from the heap whether they are reachable or

not. The chunk with VHTI=120 is backed-up to disk. It’s PB is reset to indicate that

the chunk is no longer available on the virtual address space and it is on the disk

at the disk address indicated by the DA entry=0xdab678ca.

4.5.4 Object Recovery Module Explanation

Object recovery module, shown in figure 21, is executed once an application

makes a reference to an object that was already deallocated and backed up to

disk. This is called a reference to a false positive object. A false positive object was

identified earlier as a potential leak and moved to disk. It turns out, later on, that

this object is being accessed by the program. The MLDR object recovery module

a long with the ML-VMS is capable of recovering such an object.

www.manaraa.com

75

a. Find a free memory chunk and return its virtual address (VA)

b. Copy the object from disk to the new located object

c. set the PB

d. set the virtual address entry in the VHT to the new VA

e. Remove the recovered chunk from disk.

FIGURE 21: OBJECT RECOVERY FOR MLDR

We explain how the object recovery module works using an example. We

take a snapshot of the VHT before and after executing the object recovery module.

Assume the snapshot of the VHT before executing the recovery module as follows:

(VHTI)

Presence Bit

(PB)

Virtual Address (VA) Size Disk Address

(DA)

… ….. … ….

120 0 0x8012b00 40 0xdab678ca

… … … … ….

www.manaraa.com

76

If the program has to access entry 120 it finds out that the PB is reset. This

means the chunk is available on disk. The module allocates a new room for chunk

stored in DA=0xdab678ca in the heap and return it’s VA, say 0x8003c01. The PB

is set to indicate the chunk is now available in the virtual address space and can

be accessed normally and the VA is changed in the VHT to point to the new

returned VA. The recovered chunk with DA=0xdab678ca is removed from the disk

to save space. The new snapshot of the VHT after performing the object recovery

looks as follows:

(VHTI) Presence Bit

(PB)

Virtual Address (VA) Size Disk Address

(DA)

… ….. … ….

120 1 0x8003c01 40 0xdab678ca

… … … … ….

4.6 Crash Preventing

We have seen that the MLD can delay a possible application crash for an

application dependent period of time. In case the crash is imminent, the MLD will

www.manaraa.com

77

 not prevent it. One big enhancement of the MLDR over the MLD is that the

MLDR can prevent the target application from crashing if the input parameters are

well-tuned. Among these parameters are Heap_Size_Threshold,

Page_Age_Threshold, and Sweeper_Sleep_Time. The MLDR removes both of the

unreachable objects and stale or useless objects, in an aging page, in order to

make enough room for new allocations. The requested size for allocation is

guaranteed to be always available assuming a large disk is used.

Crash preventing performed by the sweeper(), however, is not always

guaranteed for several reasons. These are the same reasons that apply to the

crash delay for the MLD. Among these reason are: 1) setting

Heap_Size_Threshold to a relatively large value which delays the startup of the

Sweeper(), 2) setting the Sweeper_Sleep_Time to a large value that makes the

sweeper() not able to cope with the speed of the allocation operations being made

by the target application. We have to keep in mind that allocation operations are

process dependent, and 3) Setting the Page_Age_Threshold to a relatively large

value which makes it more difficult for the Sweeper() to identify enough leaky

pages. In fact, the Sweeper() fails to identify any single leaky page if the

Page_Age_Threshold is extremely large. In case the Sweeper() fails to ensure that

the required space is available on the heap to satisfy allocation requests, the target

application will crash.

www.manaraa.com

78

Actually, we can make use of ML-VMS such that the program will never

crash. Here is how. Assume that the sweeper has slept for a very long time. Many

leaks are there and have not been discovered. The heap size reached its

limit. In this case, the malloc() should be able to free objects in the heap based on

FIFO or LRU or Random; and allocate new chunks. This is one of the powerful

features of the ML-VMS. We will not address this issue further, and will defer it to

future research and investigation.

If our system can tolerate performance overhead cost paid by the

sweeper(), the general rule of thumb is to minimize all of the mentioned input

parameters. Minmizing Heap_Size_Threshold makes the sweeper() start early and

provide enough space before it is too late. Minimizing Page_Age_Theshold makes

the MLDR identify more aging pages and provide more enough room. Minimizing

Sweeper_Sleep_Time makes the MLDR run the sweeper more frequently and, as

a result, identify more aging pages.

4.7 False Positives

 “False positives” problem is one of the potential errors in memory leak

detection tools. False positive means the detected leak is not a real leak. If the

system has given up on a false positive object and got dereferenced later on then

the program crashes altogether. False positives can not be tolerated in critical

mission applications.

www.manaraa.com

79

We have seen that the MLD produces zero false positives because it

implements a conservative approach that considers every value similar to a pointer

as a pointer. The new structure of the ML-VMS allows the MLDR to remove all

aging chunks if they are reachable or unreachable. The problem of false positives

 occurs when a reachable chunk that has not been used for a relatively long

period of time is aged. In that case, the MLDR will remove these aged chunks and

falls in the false positive problem in case any of them get dereferenced. The MLDR

provides a solution to false positives problem based on the ML-VMS by using the

object recovery module of the algorithm.

4.8 False Negatives

A false negative is another potential error in memory leak detection tools. It

means the failure to detect real memory leak. In case, there is at least one active

chunk in the virtual space page, while the other chunks have leaked, then the

corresponding physical page remains active and the leaks in that page will not be

detected.

www.manaraa.com

80

As in the MLD algorithm, the MLDR does not totally remove false negatives.

The MLDR is also similar to the MLD in terms that it can minimize the number of

false negatives by decreasing the Page_Age_Threshold. Decreasing the

Page_Age_Threshold makes the MLDR identify more leaky objects. However, this

operation increases the cost paid by the sweeper() that sweeps, as a result, a

relatively large number of potential leaky pages. So, there is a trade off. The cost

of sweeping in the case of the MLDR is much higher than the cost of sweeping in

the MLD because the MLDR sweeping process requires an additional work. The

MLDR backs up the removed chunks to the disk in case they might be used again.

Writing to a disk is a costly operation in the virtual memory system. Several

numbers of false negatives can be tolerated since the MLD will help to keep the

application running.

4.9 Memory Leaks and Telemetry

Some parameters affect the performance of the MLDR such as

Heap_Size_Threshold, Page_Age_Theshold, and Sweeper_Sleep_Time. We

suggest implementing a telemetry tool that tunes these parameters in order to

generate the minimum false positive rate given the maximum tolerable overhead.

Some other benefits that can be gained by a telemetry tool are the same benefits

discussed earlier in chapter 3.

www.manaraa.com

81

 A telemetry tool is outside the scope of this dissertation and is left for future

work.

4.10 Conclusion

This chapter presents a new approach for virtual memory system. It

reorganizes the virtual memory system into a Multi-Layer Virtual Memroy System

(ML-VMS). The ML-VMS adds a new layer to the current virtual memory system

and dynamic memory management.

A new algorithm for memory leak detection and recovery (MLDR) is

presented based on this new structure. The MLDR still uses the physical memory

aging as done by the MLD (chapter 3) but it builds upon the proposed new ML-

VMS. We show how the ML-VMS along with the MLDR allows for a complete run-

time resolution of memory leak problem.

The MLDR resolves the problem of both of the reachable and unreachable

objects. It handles the problem of false positives. If a false positive object is deleted

from the heap and referenced later by the application the deleted object is

recovered. It provides a run-time solution for memory leak detection and recovery

www.manaraa.com

82

whereas most of previous approaches either detect memory leak in

development environments or remove only unreachable objects in run-time

environment. It prevents programs from crashing. The MLDR guarantees that

space on the virtual memory is always available by moving potential leaky objects

to disk that presumably has an unlimited space.

www.manaraa.com

83

Chapter Five
Performance Evaluation and Simulation

This chapter analyzes the performance of the MLD and the MLDR based

on the ML-VMS in terms of access time and complexity. It shows, through analysis

and a trace-driven simulation program, how some of the performance measures

can be enhanced. We compare both of the MLD and the MLDR to current memory

leak solutions and show how the new approach outperforms the current

approaches in providing a complete run-time solution.

We start the performance analysis in section (5.1). Then, we discuss the

simulation model of the the MLD and its simulation results in section (5.2). After

that, we discuss the simulation results of the the MLDR (5.3) and finally, we

compare both of the MLD and MLDR to some available solutions (5.4).

5.1 Performance Analysis

In the next sub sections, we analyze the performance of the MLD, the ML-

VMS and the MLDR in terms of access time and complexity and show how this

cost can be minimized.

www.manaraa.com

84

5.1.1 The MLD Complexity

The MLD algorithm (3.1.1) incurs the cost of initialization, bookkeeping and

sweeping these cost are given according to equation (1).

MLD cost = Initialization cost + bookkeeping cost + sweeping cost …. (1)

Initialization cost:
This cost is paid once when the application that exploits MLD starts up. It includes

initializing three input parameters so this cost is of the O(3).

Bookkeeping cost:
This cost is paid for every paged-out or paged-in page. By setting or resetting the

time stamp of the corresponding page in the page table. Suppose, on the worst

case, the application swaps in/out n pages then the overall cost is of the O(n).

Sweeping cost:
The sweeper is the bottle neck for the MLD algorithm. It performs the following

operations:

1. Iterates over n pages to determine if they are leaky. This operation has the

complexity O(n). In practice, the number of pages are process dependent

and has an upper constant value which makes this operation have the cost

O(number of pages). Where number of pages = process size/page size.

2. For each leaky page the set of unreachable objects have to be found by

scanning from static, stack, and registers. Therefore, this operation has the

complexity of O(n) assuming linear search is used.

www.manaraa.com

85

3.

4. The sweeper itself has to be re-executed in every sweeper_sleep_time.

This operation has a complexity of O(n).

Since all of these operations are nested then the overall complexity of the sweeper

is O(n2). Sweeping cost dominates the MLD other costs, initialization and

bookkeeping. Therefore the overall complexity of the MLD is O (n2).

Complexity minimization:
The cost of the MLD is kept to minimum by:

1. This cost will never be paid until the heap size threshold limit is reached.

www.manaraa.com

86

2. The sweeper will be in a sleeping state before being re-executed for a

sweeper-sleep-time period.

3. The sweeper can be parallelized as shown in the next section

5.1.2 The MLD Parallelized

In computer environments where parallelism can be used, the MLD

performance can be enhanced. We suggest using data partition in order to achieve

an enhancement in performance. Figure 22 shows how the MLD can use data

partition to parallelize the problem of sweeping.

Page 0 .

p0 P...

isLeaky()Nosleep

restart

Scan unreachable

Garbage Collect

Page n

pn

isLeaky() No sleep

restart

Scan unreachable

Garbage Collect

Figure 22: MLD Parallelized

www.manaraa.com

87

Let

Page[]={page 0, page 1,…,page n} represent the set of page indexes in a

page table for a given application where n>=0

process[]={p0, p1, .., pn} represent the set of parallel processes. Where

n>=0

Then for every pagei in page[] assign the process pi from process[].

 If the page is aging and therefore might contain a potential leak the process

continues; otherwise it sleeps a sweeper-sleep-time period and restarted.

The activity of scanning unreachable objects and garbage collection also

can be further parallelized for extra performance enhancement. Using

parallelism to enhance performance of the MLD is suggested to be

investigated in a future work.

www.manaraa.com

88

5.1.3 Demand Paging Access Time

Demand paging access time is governed by memory access time and the

page-fault time.

Let p be the probability of a page fault (0<= p <=1).

 ma be memory access time

 pgTime page fault time

 dpTime demand paging access time

Then

Demand paging access time (dpTime) is calculated according to the following

formula

dpTime = (1-p) * ma + p x pgTime (2)

in order to minimize the dpTime, the pgTime should be as low as possible since

ma is usually given in nanoseconds whereas pgTime is in milliseconds. Since this

parameter is physically set by the hardware, the only remaining parameter that is

SW and architecture dependent is the probability of page faults. Thus minimizing

(p) is the target of system architecture and optimization.

www.manaraa.com

89

5.1.4 ML-VMS Access Time

The ML-VMS has significant effect on the performance of the computer

system. The ML-VMS adds additional layer on the demand paging system. In

addition to the cost paid by the demand paging memory system, the ML-VMS may

incur the cost of accessing a disk either to backup a chunk or to recover another

chunk in case of false positives.

The ML-VMS incurs additional time over that of demand paging in case an

application is referencing a chunk that has already moved to disk. i.e false positive.

Let pFP be the probability of a false positive access (0<= pFP <=1).

 fpTime false positive time

 dpTime demand paging access time

Then the ML-VMS access time is given according to the following equation:

ML-VMS access time = (1-pFP) * dpTime + pFP * fpTime (3)

Where fpTime is the service time incurred to perform the following operations

1. Service the false positive interrupt.

2. Recover the chunk from disk including making a new room for the recovered

chunk and updating the VHT.

3. Restart the process.

Since most of the above operations are disk operations, we expect the service

time, fpTime, to be costly. We minimize this cost by:

www.manaraa.com

90

a. reducing the probability of false positives (pFP) to the minimum. We show

in the next two section how increasing the page age threshold value reduces

the false positive rate and, as a result, reduces the performance cost.

b. storing the backed up objects on the swap space instead of the regular disk.

Swap space is usually faster than that of the file system.

By substituting equation 2 for dpTime in equation 3 the ML-VMS time is given

according to equation 4.

ML-VMS access time = (1-pFP) ((1-p) * ma + p x pgTime)

+ pFP * fpTime (4)

5.1.5 ML-VMS Overhead Cost

The overhead of the ML-VMS can be derived from equation 2 and 4

according to the following equation:

OH= ML-VMS access time/ dpTime (5)

The ML-VMS will be OH times more expensive than that of the demand paging

access time. Since false positive rate is the dominant factor of the ML-VMS then

from equation 5 the ML-VMS overhead can be minimized by just minimizing the

false positive rate as we show in the simulation results of the MLDR.

www.manaraa.com

91

5.2 Trace-Driven Simulation of Memory Leak Detection Algorithm

In order to validate, verify, and provide a proof of concept to the MLD

algorithm, we built and ran a trace-driven simulation program. Figure 23 shows an

abstract block diagram for the top-level of the simulation program.

Start

Write output

parameters
Stop No more traces

Determine Next

Event for application

from the input trace

file

Next
Memory Access

Event

- perform demand

paging

- perform

bookkeeping()

- LRU victim

replacement policy

Memory

Deallocation

Event: mark

deallocated

objects as

unreachable

Memory

Allocation

Event(exec

malloc())

Run the

Benchmark

Create trace

files

Validate trace

files using

universally

available tools

mtrace() and

dmalloc

If results

are valid

NO

Make

necessary

changes

Read one

trace file at a

time

While there is

more traces

Stage One: data trace collection and Leak Injection

Stage Two: trace-driven simulation

Next

Leak Injection

Continue to trace-driven simulation program

Figure 23: trace-driven Simulation program - abstract block diagram

The trace-driven simulation program consists of two stages. These stages

www.manaraa.com

92

are shown in figure 23 separated with a horizontal line. The first stage is

data trace collection and leak injection and the latter is the trace-driven simulation

for the memory leak detection algorithm. We illustrate these stages next.

5.2.1 Data Trace Collection and Leak Injection (Stage One)

In this section, we describe the benchmark used, the data collection

technique, and the process of leak injection.

5.2.1.1 MLD Bench Mark

In order to collect data traces and use it as an input to test our trace-driven

simulation program, we built our own benchmark. The benchmark generates

random allocations and deallocations and records it to a trace file. A survey of

trace-driven memory simulation can be found in (Uhlig and Mudge, 1997;

Toomula,2004) and the accurecy of trace-driven simulations in (Goldschmidt and

Hennessy,1993). We could use the trace provided by a synthetic model (Zorn and

Grunwald, 1994) or a trace generated by program execution (Bhansali et al, 2006).

Our benchmark provides the following advantages:

1. It is designed to run similar to real-world programs. The runtime period of

this benchmark is controlled by a tunable parameter (MAX_TRANS);

MAX_TRANS is described in the next section (data collection.)

2. It has a known behavior and its generated statistics matches 100% to the

statistics collected by universally well-known tools like memory trace

(mtrace) and debug memory allocation library (dmalloc).

www.manaraa.com

93

3. It has no internal memory leak. It generates a balanced allocation and

deallocation transactions. Before it terminates, it deallocates all

undeallocated objects. Thus, the only memory leak in the trace files is our

previously known injected leak. This allows a more deterministic analysis of

the memory leak detection algorithm.

 Our benchmark consists of two files mldbench.h and mldbench.c. The source

code for these files is provided in appendix B.

5.2.1.2 Data Collection

In order to generate and validate trace files, we perform the following steps:

1. Tune parameters in mldbench.h file. The mldbench.h contains several

parameters that control the output nature of the trace files. Not all real-world

applications allocate and deallocate memory in the same manner. Some

applications allocate small-sized objects, while others allocate medium or

large-sized objects. Some applications hold allocated objects for a long

time; others hold objects for a short time and so on. Tuning the benchmark

makes its output similar to a target application. We list the parameters used

in mldbench.h file:

www.manaraa.com

94

a) MAX_TRANS: the maximum number of allocations and deallocations to

create. The larger the value the lengthier the trace file will be.

b) SEED: the seed value to the random function.

c) P_MALLOC: the probability that malloc() will be called.

d) P_FREE: the probability that free() will be called. P_MALLOC and

P_FREE sum to one. Setting up P_MALLOC to a value higher than

P_FREE makes the benchmark allocate more often than it deallocates,

i.e., creates a leaky environment.

e) P_MIN_SIZE: probability of allocating objects of small size. Small sized

objects belong to the closed interval [MIN_SMALL_CHUNCK_SIZE,

MAX_SMALL_CHUNCK_SIZE]

f) P_MEDIUM_SIZE: probability of allocating medium sized objects.

Medium sized objects belong to the closed interval

[MIN_MEDIUM_CHUNCK_SIZE, MAX_MEDIUM_CHUNCK_SIZE]

g) P_LARGE_SIZE: probability of allocating large sized objects. Large

sized objects belong to the closed

interval[MIN_LARGE_CHUNCK_SIZE, MAX_LARGE_CHUNCK_SIZE]

www.manaraa.com

95

h)

Table X shows the initial setup we have used for these initial parameters

Parameter Name Value

MAX_TRANS 10000, 100000

SEED 12755765

P_MALLOC 0.50

P-FREE 0.50

P_MIN_SIZE 0.85

P_MEDIUM_SIZE 0.15

P_LARGE_SIZE 0.05

MIN_SMALL_CHUNCK_SIZE 1 byte

MAX_SMALL_CHUNCK_SIZE 256 byte

MIN_MEDIUM_CHUNCK_SIZE 257 byte

MAX_MEDIUM_CHUNCK_SIZE 4 Kbyte

MIN_LARGE_CHUNCK_SIZE 4 Kbyte +1 byte

MAX_LARGE_CHUNCK_SIZE 10 Kbyte

Table 5: Benchmark used parameters
The user is encouraged to tune up the mldbench.h to the parameters that

he/she thinks are more close to the target application being simulated.

2. Compile and run. We compiled and ran the benchmark using gcc compiler

under Suse Linux 9.0. For each different value of MAX_TRANS parameter

we get a different trace file.

www.manaraa.com

96

3. Create a balanced trace. The benchmark is supposed to generate a

balanced trace file for every single run. A balanced trace file contains a

deallocation transaction for every allocation transaction. A balanced trace

file has no memory leak. Before the benchmark terminates, it deallocates

all the remaining undeallocated objects. Later on, we show how we

introduce a known leak in the trace files (leak injection) and show how much

of that leak is detected by our MLD algorithm.

4. Validate with mtrace and dmalloc. We validate the benchmark and trace

files using two well-known debugging tools: memory trace tool (mtrace) and

debug memory allocation library (dmalloc). Both tools reported that the

benchmark generates no memory leak in any created trace file. Trace files

can vary in size from small to large depending on the input parameters.

For clarity purposes, we provide figure 24 to show a snapshot of one of these

trace files:

MAX TRANS: 100000
Trans ra size
+ 0x804a008 5338
+ 0x804b4e8 118
+ 0x804b568 7010
+ 0x804d0d0 200
- 0x804b568 7010
+ 0x804b568 222
- 0x804a008 5338
- 0x804b4e8 118
+ 0x804a008 67
- 0x804a008 67
- 0x804d0d0 200
+ 0x804a008 243
+ 0x804b650 8564
- 0x804b568 222

FIGURE 24: A SNAPSHOT OF ONE OF THE TRACE FILES

www.manaraa.com

97

The plus (+) sign means allocation and the minus (-) sign means

deallocation. The remaining values represent the return address, in hexadecimal

format, and the size of each allocated or deallocated chunk in bytes.

We show how these traces are used in the trace driven simulation model.

5.2.1.3 Leak Injection

The benchmark, as already discussed, generates a balanced trace files. A

balanced trace file contains a deallocation transaction for every allocated object.

So, the trace file has no memory leak. Before the benchmark terminates, it

deallocates all the remaining undeallocated objects.

In order to inject leak in the trace files, we simply mark the deallocation

transactions that represent the free() function, in the trace files, as if they were

deleted or commented. These transactions are marked and not deleted. This mark

is used by the simulation program to know the exact point where a live object

becomes unreachable. Unreachable objects will age because they are no longer

accessed by the application and they will be detected by the MLD aging algorithm.

For example, table 6 shows the accumulated number and size of the leak that we

inject in two trace files generated by the benchmark. We will find out how much of

the injected leak is recovered by the MLD algorithm.

www.manaraa.com

98

Trace File for

benchmark

Injected leak in the trace

file

No of

objects

Size (byte)

 (a) (b)

Trace0 4976 3401804

Trace1 49855 34197871

Table 6: An example of accumulated amount of injected leak in two trace files

5.2.2 Trace-Driven Simulation (Stage Two)

The trace-driven simulation program, stage two, starts by reading a trace

file and the simulation input parameters (Input parameters are listed in appendix

A; table A.1). The program runs until the trace file has no more transactions. At the

end of simulation execution, the program writes output parameters to one or more

output files. Output parameters are listed in appendix A; table A.2.

In each single run on a trace file, the simulation program determines the

next event the target process (Pi) is going to go through. The process will enter

one of the following events: Memory allocation event, free event, or memory

access event. Although, in reality, a process might be in some other events, these

are the only events of most interest in order to monitor virtual address space. A

process might be allocating memory and, as a result, increasing the heap size and

consuming virtual address space. A process might be freeing memory and,

therefore, saving virtual address space. Or, a process might be accessing memory.

www.manaraa.com

99

If a memory reference is made to a page that is available in memory, then

the reference is completed and no further action is required. Otherwise; its

corresponding page is paged-in and its time stamp (TS) is reset according to the

bookkeeping part of the MLD algorithm. If there is no space in RAM for the

requested page, a victim page is selected for replacement and the current time is

written into its corresponding page table entry (TS).

To simulate memory allocation and deallocation events, we have used our

own versions of malloc() and free() functions and implemented the changes that

we proposed in section 3.1. For memory access event, we developed a function

www.manaraa.com

100

that simulates demand paging. Bookkeeping part of the algorithm was

implemented in the page replacement policy. The page replacement policy used,

in this simulation, is implemented using least recently used (LRU) strategy. The

source code of MLD simulation program is provided in appendix C.

Determination of the next event is governed by the data available in the

trace files. Each transaction in the trace files contains a sign, return address, and

a size. Plus sign means allocation, and minus sign means deallocation. The

remaining values represent the return address in hexadecimal format and the size

of each allocated or deallocated chunk. The probability of performing memory

access is an input parameter. Processes that suffer from memory leak problem

usually call malloc() more often than free(). Trace files govern how and when

malloc and free will be called. In reality, calling malloc() and free() are process

dependent. On one hand, we may find a process with no single memory allocation

or deallocation statement. On the other hand, the majority of the statements in

some other processes might be memory allocation and deallocation.

In the next sub-sections, we introduce the simulation assumptions, the input

and output parameters, the simulation model, and discuss several experiments

that illustrate the MLD performance measures.

www.manaraa.com

101

5.2.3 Simulation Assumptions

The following assumptions are taken under consideration:

 The demand paging is used.

 A global replacement strategy is used. Victim pages are selected according

to LRU strategy. The impact of the replacement policy on the MLD is not

investigated in this thesis. This could be the subject of a future research.

 Trace files are considered valid representations to real-world application.

 A process under simulation is highly influenced by the input parameters

such as RAM size, Max heap size, heap size threshold,

page_age_threshold, whether it is running with other processors or running

alone, and page file size.

5.2.4 Input and Output Parameters

 Appendix A lists the input and output parameters used in the simulation

program respectively.

5.2.5 Simulation Model

According to one of the input parameters, AgingFlag (Appendix A), the

simulation program can run a simulated process according to the following two

models:

www.manaraa.com

102

a. Demand paging model: if the input AgingFlag is reset the simulation

program runs a process according to the normal demand paging model and

does not perform any action of the MLD algorithm.

b. Demand paging model with the MLD: if the input AgingFlag is set the

simulation program runs a process according to the modified demand

paging model that implements the MLD algorithm.

AgingFlag is used so that the same simulation program can compare the

behavior of a process under the normal situation with the behavior of the same

process under the MLD algorithm.

5.2.5.1 Simulation Model (Demand Paging)

This simulation model models the virtual memory system. Virtual memory

is a technique that allows processes to execute while not being completely

available in physical memory. We have chosen to implement the model by demand

paging. This is the most commonly used approach in real-life operating systems.

Process 1 Process 2 Process 3 Process n

www.manaraa.com

103

 Page Table 3

0 2 V

1 1 V

… … …

m I

Physical Memory

0

1 Page1 V

2 Page0 V

3

4

… … …

Frame k

Figure 25: Virtual memory system implemented by demand paging

As shown in figure 25, the simulation model can run (n) number of

processes where n is an input parameter. Each process has its own page table

and competes with other processes on the shared physical memory. The

figure shows how pages one and two of process three are both valid and available

in memory. It also shows that page (m) is invalid and available on disk and it has

to be swapped-in once needed.

 Page 0

Page 1

Page m

…….

Page

Table

Page

Table

Page

Table n

m

Hard Disk

www.manaraa.com

104

5.2.5.2 Simulation Model of Demand Paging with MLD Algorithm

The simulation model is updated to reflect the MLD major parts listed in the

block diagram (figure 6). We show the model with the MLD algorithm in figure 26.

In addition to demand paging, the model now implements bookkeeping() and the

sweeper()

 Process i

Page Table 3
0 2 v TS

1 1 v

… … …

m i

 Physical Memory

0

1 Page1 v

2 Page0 v

3

4

… … …

Frame k

MallocTable

FIGURE 26: VIRTUAL MEMORY SYSTEM IMPLEMENTED BY DEMAND PAGING WITH MLD

Begin Address Size Mark Flag

m

Hard Disk

Page 0

Page 1

Page m

…….

For every aging page:
- Set reachable objects flag

- GC unreachable objects

- Remove GCed objects from Table

Sweeper()
Iterate through page

table to find aging pages

(every sweeper-sleep

time)

Page in/out /bookkeeping

www.manaraa.com

105

5.2.6 Simulation Results

5.2.6.1 Time versus Heap Size

In this experiment, shown in figure 27, we run two processes; process zero

(p0) and process one (p1). We set the input parameters to make both processes

read from the same trace file. The only difference between p0 and p1 is that p1

implements the MLD algorithm and p0 does not. The Heap_Size_Threshold for p1

is set to 80% of the maximum heap size. We run the experiment and record the

following statistics versus time as shown in table 7.

Time
MaxHeapSiz
e

80%Theshol
d

P0_HeapMaxSiz
e

P1_HeapMaxSizeW_ML
D

1000 2097152 1677721.6 169441 169441

2000 2097152 1677721.6 341528 341528

3000 2097152 1677721.6 509593 509593

4000 2097152 1677721.6 619021 619021

5000 2097152 1677721.6 761058 761058

6000 2097152 1677721.6 900351 900351

7000 2097152 1677721.6 1049641 1049641

8000 2097152 1677721.6 1234014 1234014

9000 2097152 1677721.6 1405741 1405741

10000 2097152 1677721.6 1557247 1557247

11000 2097152 1677721.6 1745974 1682868

12000 2097152 1677721.6 1864535 1682868

13000 2097152 1677721.6 2050102 1692461

14000 2097152 1677721.6 2195087 1711977

15000 2097152 1677721.6 2380028 1731262

16000 2097152 1677721.6 2600321 1791244

17000 2097152 1677721.6 2748867 1825067

18000 2097152 1677721.6 2946119 1888295

19000 2097152 1677721.6 3114711 1967552

20000 2097152 1677721.6 3287400 2028340

www.manaraa.com

106

21000 2097152 1677721.6 3509536 2123939

22000 2097152 1677721.6 3688190 2189165

23000 2097152 1677721.6 3713226 2206496

24000 2097152 1677721.6 3713226 2206496

Table 7: Heap Size versus Time
The Heap_Size_Threshold for p1 is set to 80% of the maximum heap size

as shown in the triangle-line in figure 27. The maximum heap size is an input

parameter for this experiment and is shown as a squared-line. Theoretically,

maximum heap size in some platforms is equal to 232 bytes.

The experiment results show that heap size is growing with time for both

processes which is expected since they allocate and never deallocate memory. P0

crosses the maximum heap size border at time (t1 = 20000). p1 keeps

running for a longer period than p0. p1 activates the sweeper just after the

threshold of 80% is reached as shown in point (S = 11000). The sweeper makes

extra room for new allocations. However, p1 also crosses the line of the maximum

heap size but at time (t2). In this simulation, we allow processes to go beyond the

maximum size of the heap in order to collect statistics.

www.manaraa.com

107

In reality, p0 will crash at t1 whereas p1 will crash at t2. t1 and t2 are the

points in time where heap space is exhausted for processes p0 and p1

respectively. We conclude from this experiment that p1 with the MLD algorithm

lives longer than p0.

Figure 27: Experiment One: Time Vs Heap Size
The scenario of this experiment was one of the worst possible scenarios

and yet, p1 with MLD proved to live longer for a delta time period equal to t2-t1 as

follows:

12 ttt

Where:

Time Vs Max Heap Size

Time

MaxHeapSize

80%Theshold

P0_HeapMaxSize

P1_HeapMaxSizeW_MLD
S

t1 t2

∆t

www.manaraa.com

108

t1 is the crash time of process (p0) that does not implement the MLD and

t2 is the crash time of process (p1) that implements the MLD

In more relaxed experiments (scenarios), the delta time period may be big

enough to satisfy the customer of the process p1 or makes p1 just survive until

critical time in mission-critical applications is passed. After all, removing

unreachable objects and saving the corresponding space on the heap for future

allocations is better than just doing nothing.

5.2.6.2 Page Age Threshold (Page_Age_Theshold) Vs False Negatives and
Overhead Cost

In this experiment, we test the effect of choosing different values for

Page_Age_Threshold, an input parameter to the MLD, on the number of false

negative objects and overhead cost. False negative objects are unreachable

objects that were not identified by the MLD algorithm. The simulation is set to run

the same trace file ten different times as shown in table 8. In each single run, we

record the number of false negative objects and the overhead. The overhead is a

counter that represents how many times the sweeper() is called. Calling the

sweeper() more often means incurring more cost and vice versa. The

Page_Age_Threshold is computed dynamically to be equal to a constant (K), an

input parameter, times the average page age(AvgAge) as follows:

 AvgAgeKThresholdAgePage __

 Where: K is a constant parameter,

www.manaraa.com

109

AvgAge is the average page age that is computed accumulatively

during run time and adjusted to include every aging page, and

OverHead is the number of times the sweeper() is called.

Trace file, trace0, is used for this particular experiment. From table 6, we already

know that this file has 4976 injected leaky objects with total size of 3401804 bytes.

Trace file; trace1, is a lengthier file and it produces a close results.

of

run

Constant
(K)

#Injected
leaky

objects
(a)

#Recovered
objects

(b)

#False
NEGs

(a-b)

Percentage of false
NEGs to injected

(a-b)/a *100

OverHead
counter

1 0.05 4976 2627 2349 47% 6676

2 0.1 4976 2603 2373 48% 6561

3 0.15 4976 2626 2350 47% 6176

4 0.25 4976 2577 2399 48% 5896

5 0.5 4976 2475 2501 50% 5026

6 0.75 4976 2394 2582 52% 4267

7 1 4976 2384 2592 52% 3750

8 1.25 4976 2257 2719 55% 3165

9 1.5 4976 2125 2851 57% 2820

10 1.75 4976 2041 2935 59% 2399

Table 8: False Negatives Vs different values of Page_Age_Threshold

On one hand, as shown in figure 28 in the Xed-line, the number of false

negatives is proportionally increasing with the increase in the

Page_Age_Theshold. This result is expected since the algorithm will identify less

leaky pages as the Page_Age_Threshold increases.

www.manaraa.com

110

 In fact, if the Page_Age_Threshold is very small then most of the pages in

the virtual space will be aging pages and the MLD will look into them for leak. In

this case, a few

 unreachable objects will go undetected which decreases the number of

false negatives. If the Page_Age_Threshold value is extremely high the MLD will

rarely find an aging page which increases false negatives.

FIGURE 28: PAGE_AGE_THRESHOLD VS NO OF FALSE NEGATIVES AND OVERHEAD

Page Age Threshold Vs Overhead and NO. of False Negatives

Constant (K)

Recoverd LeaK

False NEGs

OverHead

www.manaraa.com

111

On the other hand, the overhead value associated with calling the

sweeper(), shown in figure 28, the circled-line, decreases as the page age

threshold increases. This result is also expected. The MLD calls the sweeper() less

often as the Page_Age_Theshold increases.

The triangle-line goes exactly the reverse of the Xed-line. We provide it for

clarity purposes. As the number of false negative objects increases the number of

the recovered objects decreases and vice versa.

This experiment concludes that small Page_Age_Threshold values lead to

small number of false negatives and high overhead and vice versa. In this case

our recommendation is system dependent. If the system can tolerate high

overhead cost, then use a small value for Page_Age_Threshold and minimize the

number of false negatives; otherwise increase the Page_Age_Threshold as much

as the system can tolerate the overhead cost. Some systems can tolerate

overhead cost by using parallel programming and multiple processors. In this case,

the sweeper() can be assigned to a set of processors having the system not worry

about the overhead. As mentioned earlier, a telemetry tool can provide a great help

in tuning Page_Age_Threshold parameter and make the administrator visualize

the effect of tuning this parameter on the overhead cost.

www.manaraa.com

112

5.2.6.3 Page Size Vs False Negatives

This experiment shows the relation of page size to the number of false

negative objects. We run this experiment on trace file, trace0, by varying page size

from 1Kb to 16KB and record the statistics shown in table 9.

Page
Size(KB)

#Recovered
Objects

#FalseNegs
Objects

1 2314 2662

2 2531 2445

4 2698 2278

8 2829 2147

16 3021 1955

 Table 9: page size versus false negative objects
The data is plotted in figure 29 below

Figure 29: Page Size Versus Number of False Negative objects

Page Size Vs No of False Negatives

Page Size(KB)

#Recovered Objects

#FalseNegs Objects

www.manaraa.com

113

The figure shows that as the page size increases the number of false

negatives decreases. This occurs because once a page is aged all of the

unreachable chunks it contains will be removed altogether. The higher the page in

size the higher the number of unreachable chunks it contains. Once these chunks

are removed the number of recovered objects will be increased and therefore the

number of false negatives will be decreased.

 This finding is contrary to the intuitive argument, that if only one chunk in

the virtual space is active, while the other chunks have leaked, then the

corresponding physical page remains active and the leaks in that page will not be

detected. This argument is true to a certain degree, but the global replacement

strategy of LRU algorithm will force some pages to age by choosing them as victim

pages even though they contain live chunks. The sweeper() will detect such aging

pages if it is set to work on a small page_age_threshold. The sweeper() will remove

www.manaraa.com

114

 all of the unreachable chunks in these pages even if it has a relatively smaller age.

The higher the size of the page the higher the number of the unreachable chunks

it contains, and therefore the smaller the number of false negatives will be.

5.3 Simulation Results of the MLDR

A trace-driven simulation program is built in order to validate, verify, and

provide a proof of concept to the MLDR algorithm. In the next sub sections, we

discuss the major results of this simulation program.

5.3.1 Time versus Heap Size

Time is shown versus heap size in figure 30. In this experiment, we run two

processes; process zero (p0) and process one (p1). We set the input parameters

to make both processes read from the same trace file. The only difference between

p0 and p1 is that p1 implements the MLDR algorithm and p0 does not. We run the

experiment and record the following statistics versus time as shown in table 10.

The Maximum Heap Size is system dependent. For this experiment, the maximum

heap size is an input parameter.

www.manaraa.com

115

Time MaxHeapSize 80%Theshold P0_HeapAllocatedSize

P1_Heap_Allocated
_
Size_MLDR

1000 2097152 1677722 169441 169441

2000 2097152 1677722 341528 341528

3000 2097152 1677722 509593 509593

4000 2097152 1677722 619021 619021

5000 2097152 1677722 761058 761058

6000 2097152 1677722 900351 900351

7000 2097152 1677722 1049641 1049641

8000 2097152 1677722 1234014 1234014

9000 2097152 1677722 1405741 1405741

10000 2097152 1677722 1557247 1557247

11000 2097152 1677722 1745974 1682868

12000 2097152 1677722 1864535 1682868

13000 2097152 1677722 2050102 1658285

14000 2097152 1677722 2195087 965517

15000 2097152 1677722 2380028 889703

16000 2097152 1677722 2600321 804142

17000 2097152 1677722 2748867 743908

18000 2097152 1677722 2946119 698117

19000 2097152 1677722 3114711 710462

20000 2097152 1677722 3287400 719379

21000 2097152 1677722 3509536 630856

22000 2097152 1677722 3688190 581057

23000 2097152 1677722 3713226 710462

24000 2097152 1677722 3713226 719379

Table 10: Heap Size versus Time

www.manaraa.com

116

The Heap_Size_Threshold for p1 is set to 80% of the maximum heap size

as shown in the triangled-line in figure 30. The maximum heap size is shown as a

squared-line. Theoretically, the maximum heap size in some platforms is equal to

232 bytes.

The experiment results show that heap size is growing with time for both

processes. This result is expected since both processes allocate and never

deallocate memory. P1 does not start deallocating until heap size threshold is

reached. P0 crosses the maximum heap size border at time (t). The simulation

allows the program to run beyond the maximum heap size in order to record

statistics. In reality, time (t) is the time at which process p0 crashes due to failure

in allocating additional space for the application to keep going. p1 starts the backup

and aging module of the MLDR at point (S) when the 80% threshold is reached.

The backup and aging module of the MLDR makes extra room for new allocations.

By removing unreachable chunks and backing up aging reachable chunks for p1,

Heap Allocated Size Vs Time

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

1 3 5 7 9 11 13 15 17 19 21 23

Time

H
e

a
p

 S
iz

e

Time

MaxHeapSize

80%Theshold

P0_HeapAllocatedSize

P1_Heap_Allocated_Size_M

LDR

80% Threshold
S

t

www.manaraa.com

117

we can save enough room for p1 to keep going.

Figure 30: Experiment One: Time Vs Heap Size

5.3.2 Time versus Heap Size for both of the MLD and MLDR

For the sake of comparison among a regular process, a process with the

MLD and a process with the MLDR, we repeat the previous experiment by showing

these three types of processes.

Figure 31: Time versus heap size comparison between MLD and MLDR

Figure 31 shows the same processes listed in Figure 30. However, this time

we include an additional process(p2). P2 is a process that implements the MLD as

explained in chapter 3 of this dissertation. P2 is shown as a filled-circled line. The

figure shows the following results: a regular process crashes once the maximum

heap size limit is reached. A process with the MLD starts sweeping and saves

extra room for new allocations and makes the application live longer for a delta

time period. In some scenarios, a process with the MLD will crash if it fails to satisfy

allocation requests. A process with the MLDR, however, provides much more room

H
e
a

p
 S

iz
e

Time

Heap Allocated Size Vs Time

Time

MaxHeapSize

80%Theshold

P0_HeapAllocatedSize

P1_Heap_Allocated_Si
ze_MLDR
P2_With MLD

S
t1

t2

∆t

80% Threshold

www.manaraa.com

118

once a heap size threshold is reached and prevents crashing. This result is

not always true because it is dependent on some input parameters that we have

already discussed in crash preventing in chapters 3 and 4.

5.3.3Time versus Heap Size and Disk Space Used

The backup and recovery mechanism of the MLDR works by saving space

on the virtual address space. The MLDR moves potentially leaky objects to disk.

Table 11 lists the results of this experiment; time versus heap allocated size and

disk space used given 80% threshold value is used.

Time 80%Threshold

Heap
Allocated
Size

Disk
Space
Used

1000 1677722 57359 0

2000 1677722 195695 0

3000 1677722 265621 0

4000 1677722 358133 0

5000 1677722 422128 0

6000 1677722 513125 0

7000 1677722 580893 0

8000 1677722 628770 0

9000 1677722 723789 0

10000 1677722 824466 0

11000 1677722 955641 0

12000 1677722 1061927 0

13000 1677722 1195961 0

14000 1677722 1333416 0

15000 1677722 1448488 0

16000 1677722 1598918 0

17000 1677722 1677722 0

18000 1677722 980570 697254

19000 1677722 918643 759181

20000 1677722 839608 838216

21000 1677722 747474 930350

22000 1677722 703162 974662

www.manaraa.com

119

23000 1677722 679870 1017864

24000 1677722 699729 1008085

25000 1677722 634412 1083417

26000 1677722 573913 1153619

27000 1677722 548118 1187049

28000 1677722 564793 1215291

29000 1677722 613900 1231088

30000 1677722 631011 1283338

31000 1677722 635194 1308675

Table 11: Time versus heap size and used disk space

The table results are shown in Figure 32. The figure shows that when a process

reaches the threshold line it starts the backup and recovery module. It backs up

the potentially leaky chunks to disk.

Figure 32: Time versus disk space used

The disk space used remains zero as long as the heap size threshold is not

reached. Once the threshold limit is reached, the recovery and backup of MLDR

starts working and, as a result, the disk space used starts increasing and the heap

allocated size starts decreasing.

Time vs Heap Size and Disk Space Used

80%Theshold

Heap Allocated Size

Disk Space Used

80% Threshold

www.manaraa.com

120

5.3.4 Page Age Threshold Vs False Negatives, False Positives and

Overhead Cost

In this experiment, we test the effect of choosing different values for

Page_Age_Threshold, an input parameter to MLD, on the number of false negative

objects, false positive objects, and overhead cost. False negative objects are

unreachable objects that have not been identified by the MLD algorithm. False

positive objects are objects that are identified as leaky and have been

dereferenced after the system has moved them to disk. Overhead cost is

associated with the number of disk backup and recovery operations. Increasing

the number of backing up objects or recovering them has a performance cost. The

simulation is set to run the same trace file ten different times as shown in table 12.

In each single run, we record the number of false negative objects, false positive

objects, and the overhead. The experiment is conducted on trace file (trace0) and

the results are shown in figure 33.

of run Constant
(K)

#Injected
leaky

objects

#Recovered
objects

#False
NEGs

#False
Positives

Overhead
Cost

(a) (b) (a-b)

1 0.05 4976 2596 2618 11024 24213

2 0.1 4976 2609 2603.7 10472 23092

3 0.15 4976 2596 2618 10479 23117

4 0.25 4976 2520 2701.6 10081 22236

5 0.5 4976 2479 2746.7 8332 18553

6 0.75 4976 2347 2891.9 7109 16007

7 1 4976 2318 2923.8 5804 13380

8 1.25 4976 2207 3045.9 4225 9992

9 1.5 4976 2185 3070.1 2868 7170

10 1.75 4976 2107 3155.9 1603 4571

Table 12: Page age threshold versus False Negatives, false positives and overhead

www.manaraa.com

121

The results are shown in figure 33.

FIGURE 33: PAGE_AGE_THRESHOLD VS NO OF FALSE NEGATIVES AND OVERHEAD

On the one hand, the number of false negatives as represented by a filled-

squared-line is proportionally increasing as the Page_Age_Theshold increases.

This result is expected since the algorithm will identify less leaky pages as the

Page_Age_Threshold increases. In fact, if the Page_Age_Threshold is very small

then most of the pages in the virtual space will be aging pages and the MLDR will

look into them for leak. In this case, a few unreachable objects will go undetected

which decreases the number of false negatives. If the Page_Age_Threshold value

is extremely high the MLDR will rarely find an aging page which increases false

negatives.

On the other hand, both of the number of false positives and the overhead

cost value associated with the backup and recovery module decrease as the page

age threshold increases. This result is also expected. The MLDR will call the

backup and recovery module less often as the Page_Age_Theshold increases.

Page Age Theshold Vs Fnegs, Fposs, and Cost

Constant (K)

#False NEGs

#False Positives

Overhead Cost

www.manaraa.com

122

This experiment concludes that small Page_Age_Threshold values are

associated with small number of false negatives and a relatively large number of

false positives and an increase in the overhead cost and vice versa. In this case,

our recommendation is system dependent. If the system can tolerate high

overhead cost, then use a small value for Page_Age_Threshold and minimize the

number of false negatives; otherwise increase the Page_Age_Threshold as much

as the system can tolerate the overhead cost. Some systems can tolerate

overhead cost by using parallel programming and multiple processors. In this case,

the backup and recovery module can be assigned to a set of processors and use

a fast accessed disks. As mentioned in chapter 3, a telemetry tool can provide a

great help in tuning the MLD. A telemetry tool can also be very handy in tuning up

the MLDR and it’s parameters in order to reduce false negatives under a given

tolerable cost.

5.4 Comparing MLD and MLDR to Current Solutions

In this section, we compare the MLD and the MLDR to current memory leak

solutions. We list both of similarities and differences. First, we compare the MLD

and the MLDR to SWAT, a well-known debugging tool used by Microsoft group.

Then, we compare the MLD and the MLDR to Garbage collectors.

www.manaraa.com

123

5.4.1 MLD and MLDR versus SWAT

Table 13 compares SWAT to the MLD and MLDR according to the following

criteria: i) goal of the tool, ii) memory leak detection, iii) age tracking, iv) memory

leak reporting, v) false negatives , vi) false positives, vii) time used, viii) stale

objects , ix) staleness predicate, and x) overhead.

Goal of

the tool

SWAT:

- Provide run-time checking (debugging) tool.

- Can ship with production code in order to detect errors

during real use.

- Can not delay or prevent crashing. It does not provide a run-

time solution. It can not decide by its own to delete

unreachable objects.

MLD and MLDR:

- MLD provides a partial run-time solution

- MLDR provides a complete run-time solution

- Can delay or prevent crash by making enough room to new

allocations via removing unreachable objects.

Memory

leak

detection

SWAT:

If a heap object has not been accessed for a long time then it is a

memory leak.

MLD and MLDR:

If a page in the page table has not been accessed for a long time

then it is a potential leaky page that may contain leaky objects.

www.manaraa.com

124

Age

tracking

SWAT:

- Age is tracked per every single object in the heap (the term

age is not used explicitly in SWAT)

- Since these objects in the heap are very large a sampling

approach is used to build a heap model for all allocated

objects from a statistical sampling trace of access to heap

virtual address space.

MLD and MLDR:

- Age is tracked per pages

- Use hardware available in physical memory.

- Time stamp the corresponding page in page table of the

paged-out page.

Memory

Leak

Reporting

SWAT:

At the end of an application run. (The normal behavior of a

checking/debugging tool)

MLD and MLDR:

Found leaks are removed if they are unreachable in MLD. The

MLDR removes during run-time both of stale and unreachable

chunks.

False

negatives

SWAT:

False negatives are not generated since tracking is made per each

object in the heap.

MLD and MLDR:

False negatives might be generated. Tracking liveness per page

may make some leaky chunks in some pages go undetected

because some other chunks are alive.

www.manaraa.com

125

False

positives

SWAT:

Some of leak detected is false positive. It is the responsibility of the

developer to decide whether these leaks are real or NOT.

MLD and MLDR:

- MLD produces zero false positives because it uses a

conservative approach.

- MLDR handles the problem of false positives by providing a

recovery module.

Time

used

SWAT:

Use number of accesses to represent time. Does not use wall clock

time to measure staleness, this avoids labeling objects of an

interactive application that left idle overnight as stale.

MLD and MLDR:

Use clock time to time stamp last use of a page. The time threshold

can be well-tuned to avoid misidentifying idle objects in interactive

applications as stale.

Stale

objects

SWAT:

Can detect stale objects and report them to the developer.

MLD and MLDR:

The MLD can only handle unreachable objects. The MLD can

theoretically detect stale objects but it does not because it can not

decide whether to remove these objects or not and contribute to

the overall run-time solution by providing extra room for new

allocations.

The MLDR can detect and handle both of the stale and

unreachable objects and can contribute to the overall run-time

solution by removing these objects and recover in case they were

misidentified.

www.manaraa.com

126

Stalenes

s

predicate

SWAT:

Staleness predicate decides whether an object is leaked or not

according to:

a. (never accessed) if the object is never accessed

b. (constant time) if the idle time is greater than a threshold

c. (Active time) if the idle time is greater than (N * active time).

If the object has been active for a long time it is allowed to

be inactive for a long time.

MLD and MLDR:

If the page age is greater than a tunable threshold. This tunable

threshold can replace all of the three suggested measures used in

SWAT.

Overhea

d

SWAT:

Minimize overhead by sampling the accesses made to the heap.

MLD and MLDR:

- MLD and MLDR track pages and SWAT track individual

chunks.

- Time stamping is more efficient in MLD and MLDR since we

exploit the physical available hardware.

- SWAT spends considerable time in searching the heap

model and keeping track of time.

Table 13: The MLD and MLDR versus SWAT

www.manaraa.com

127

5.4.2 MLD and MLDR versus Garbage Collectors

All of the MLD, MLDR and garbage collectors provide some sort of a run-

time solution to memory leak problem. Garbage collectors are limited to languages

designed with garbage collection in mind. Garbage collectors can only handle

unreachable objects. They can not recover stale objects because the virtual

memory system does not allow for such a solution. The MLD and MLDR are not

limited to specific languages. Both of the MLD and MLDR utilize the aging in the

physical memory (a new approach) to detect memory leak in the virtual address

space. The MLD is similar to garbage collectors in terms in can handle unreachable

objects by using a conservative approach; whereas the MLDR can handle both of

the unreachable and stale objects. The MLDR along with the ML-VMS is the only

algorithm, to our knowledge, that provides a complete run-time solution. The

MLDR can decide during run-time to remove stale objects to save extra room in

the virtual address space. If these stale objects are turned out to be false positives

then the MLDR is able to recover these objects.

www.manaraa.com

128

5.5 Conclusion

This chapter analyzes the performance of the MLD, MLDR, and the ML-

VMS. The MLD have the complexity of O(n2). The ML-VMS has significant effect

on the performance of the computer system. ML-VMS adds additional layer on the

demand paging system. In addition to the cost paid by the demand paging memory

system, ML-VMS may incur the cost of accessing a disk either to backup a chunk

or to recover another chunk in case of false positives.

The performance cost can be reduced by 1) reducing the probability of

incurring false positives to the minimum. Increasing the page age threshold value

reduces the false positive rate and, as a result, reduces the performance cost, 2)

storing the backed up objects on the swap space instead of the regular disk. Swap

space is usually faster than that of the file system and 3) suggesting parallel

programming to enhance the performance.

The MLD is validated, verified and proved to be sound using a trace-driven

simulation program. A benchmark was designed and built to provide the simulation

program with allocation and deallocation transactions that simulate a target

application. The simulation results have shown that the MLD is capable of

removing unreachable objects and provide more room for new allocations.

Applications that exploit this algorithm are shown to live longer than the

applications without it. The false negative rates and overhead were shown to be

highly dependent on some input parameters like Page_Age_Threshold and system

parameters like Page_Size.

www.manaraa.com

129

The ML-VMS and the MLDR are also validated, verified and proved to be

sound using a trace-driven simulation program. The simulation results show how

the problem of false positives and false negatives can be reduced under given

tolerable cost. They also show how the MLDR can prevent an application from

crashing once a certain heap size threshold is reached

www.manaraa.com

130

Chapter Six
Conclusions and Future Works

This chapter provides basic conclusions as well as directions for future

research.

6.0 Introduction

This dissertation provides a novel approach for dynamic memory

management, a multi-layer virtual memory system (ML-VMS). The ML-VMS

reorganizes the currently used dynamic memory management and dynamic

memory allocation mechanisms in order to solve or overcome the problem of

memory leak.

In addition to the ML-VMS, this dissertation provides two new approaches

for memory leak detection and recovery. The first is memory leak detection (MLD)

using aging in physical memory. This algorithm reflects both the physical and

virtual behavior of memory allocation and benefits from the hardware support

available for tracking physical pages in real memory. The latter is memory leak

detection and recovery (MLDR) based on the ML-VMS. The MLDR uses the

physical memory aging as a mechanism of leak detection and builds on the ML-

VMS to provide a complete run-time solution to the memory leak problem.

6.1 Results

Results are discussed in terms of the factors that generally affect memory

leak detection and recovery tools such as: performance, crash preventing or crash

delay, false negatives, false positives, and run-time solution.

www.manaraa.com

131

6.1.1 Performance

The performance analysis conducted for the MLD, MLDR and the ML-VMS

has shown that the MLD has the complexity of O(n2) and that the ML-VMS has

significant effect on the performance of the computer system. The ML-VMS adds

additional layer on the demand paging system. In addition to the cost paid by the

demand paging memory system, the ML-VMS may incur the cost of accessing a

disk either to backup a chunk or to recover another chunk in case of false positives

as shown in equations 1 through 4 in chapter 5.

The performance cost is reduced by 1) reducing the probability of incurring

false positives to the minimum. Increasing the page age threshold value reduces

the false positive rate and, as a result, reduces the performance cost, 2) suggesting

that the backed up objects are stored on the swap space instead of the regular

disk. Swap space is usually faster than that of the file system and 3) suggesting

parallel programming to enhance the performance. Figure 33 is repeated below to

illustrate how increasing the page age threshold; an input parameter, can reduce

the overhead cost.

Page Age Theshold Vs Fnegs, Fposs, and Cost

Constant (K)

#False NEGs

#False Positives

Overhead Cost

Page Age Threshold Vs Fnegs, Fposs, and Cost

www.manaraa.com

132

Decreasing the page age threshold in order to minimize the number of false

negatives adds a cost on performance by calling the sweeper() more often. This

additional sweeping increases the cost. So, there is a trade off. Decreasing false

positives enhances performance; whereas decreasing false negatives adds to the

cost. The cost of sweeping in the case of the MLDR is much higher than the cost

of sweeping in the MLD because the MLDR sweeping process requires an

additional work. The MLDR backs up removed chunks to the disk in case they

might be used again. Writing to a disk is a costly operation in the virtual memory

system. If the system can tolerate the cost, then use a small value for

Page_Age_Threshold and minimize the number of false negatives; otherwise

increase the Page_Age_Threshold as much as the system can tolerate. Some

systems can tolerate overhead cost by using parallel programming and multiple

processors. In this case, the sweeper() can be assigned to a set of processors

having the system not worry about the overhead. A telemetry tool can provide a

great help in tuning the input parameters and make the administrator visualize the

effect of tuning these parameters on the overhead cost.

6.1.2 Crash Preventing

The MLD can delay a possible application crash for an application

dependent period of time. In case the crash is imminent, the MLD will not prevent

it. One big enhancement of the MLDR over the MLD is that the MLDR can prevent

the target application from crashing if the input parameters are well-tuned. Among

www.manaraa.com

133

these parameters are Heap_Size_Threshold, Page_Age_Threshold, and

Sweeper_Sleep_Time. The MLDR removes both of the unreachable objects and

stale or useless objects, in an aging page, in order to make enough room for new

allocations. The requested size for allocation is guaranteed to be always available

assuming a large disk is used. We repeat figure 31 below to illustrate our

conclusion on crash preventing

The figure shows the following results: a regular process (p0) crashes once

the maximum heap size limit is reached. A process with the MLD (p2) starts

sweeping and saves extra room for new allocations and makes the application live

longer and delay a possible future crash for a delta time (∆t) period. In some

scenarios, a process with the MLD will crash if it fails to satisfy allocation requests.

A process with the MLDR (p1), however, provides much more room once a heap

size threshold is reached and prevents crashing.

Time

Time Vs Heap Allocated Siz

Time

MaxHeapSize

80%Theshold

P0_HeapAllocatedSize

P1_Heap_Allocated_Size
_MLDR
P2_With MLD

S
t1

t2

∆t

Time Vs Heap Allocated Size

www.manaraa.com

134

Crash preventing performed by the MLDR sweeper(), however, is not

always guaranteed for several reasons. These are the same reasons that apply to

the crash delay for the MLD. Among these reason are: 1) setting

Heap_Size_Threshold to a relatively large value which delays the startup of the

Sweeper(), 2) setting the Sweeper_Sleep_Time to a large value that makes the

sweeper() not able to cope with the speed of the allocation operations being made

by the target application. We have to keep in mind that allocation operations are

process dependent, and 3) Setting the Page_Age_Threshold to a relatively large

value which makes it more difficult for the Sweeper() to identify enough leaky

pages. In fact, the Sweeper() fails to identify any single leaky page if the

Page_Age_Threshold is extremely large. In case the Sweeper() fails to ensure that

the required space is available on the heap to satisfy allocation requests, the target

application will crash.

If our system can tolerate performance overhead cost paid by the

sweeper(), the general rule of thumb is to minimize all of the already mentioned

three input parameters. Minimizing Heap_Size_Threshold makes the sweeper()

start early and provides enough space before it is too late. Minimizing

Page_Age_Theshold makes the MLDR identify more aging pages and provide

more enough room. Minimizing Sweeper_Sleep_Time makes the MLDR run the

sweeper more frequently and, as a result, identify more aging pages.

www.manaraa.com

135

6.1.3 False Negatives

False negatives are leaky chunks that go undetected. Both of the MLD and

the MLDR do not totally remove false negatives. The MLDR is similar to the MLD

in terms that it can minimize the number of false negatives by decreasing the

Page_Age_Threshold. Decreasing Page_Age_Threshold makes both approaches

identify more leaky objects and, as a result, decrease the number of leaky chunks

that will go undetected. After all, several numbers of false negatives can be

tolerated since the the MLD and the MLDR will help to keep the application running.

6.1.4 False Positives

“False positives” means a detected leak is not a real leak. The object

identified as a potential leak gets dereferenced after the system has given up on

it! Referencing an object after it has been removed from memory, i.e., deallocated,

causes incorrect results or the program to crash altogether. False positives can

not be tolerated in critical mission applications.

We have seen that the MLD produces zero false positives because it

implements a conservative approach that considers every a like pointer a pointer.

The new structure of the ML-VMS allows the MLDR to remove all aging chunks if

they are reachable or unreachable. The problem of false positives occurs when a

reachable chunk that has not been used for a relatively long period of time is aged.

In that case, the MLDR will remove these aged chunks to disk and falls in the false

positive problem in case any of them get dereferenced. The MLDR provides a

www.manaraa.com

136

solution to false positives problem based on the ML-VMS using the object

recovery module of the algorithm. If a false positive object is deleted from the heap

and get dereferenced later by the application the deleted object is recovered.

6.1.5 Run-time solution

Current approaches for solving memory leak problem are not thorough; they

either detect memory leak in development environments as performed by static

analysis tools which requires the existence of source code or they garbage collect

unreachable objects as performed by garbage collectors. These collectors provide

partial solution only in the languages that were designed with garbage collection

in mind. There is no complete run-time solution available.

The MLD uses a conservative approach to remove unreachable objects and

save address space. It is similar to garbage collectors in terms of removing

unreachable objects. However, it uses memory aging as a method of leak detection

and it has the advantage of being suitable to applications that do not have a built-

in garbage collection.

The MLDR provides a thorough run-time solution. It handles the problem of

false positives, false negatives, and prevents target applications from crash due to

the lack of virtual memory given a well-tuned parameters and that a target

application can tolerate an additional overhead cost. The MLDR is recommended

for mission critical applications that have to live for a long time and can tolerate a

controllable overhead cost.

www.manaraa.com

137

6.2 Simulation Results

 All of the MLD, the MLDR and the ML-VMS are simulated using a trace-

driven simulation program that utilizes the trace generated by a benchmark that

we develop for this purpose. The simulation results, as shown in chapter 5, are

used to illustrate the new approaches’ validity and to provide a proof of concept

along with the performance analysis.

6.3 Implementation Guidelines

 This dissertation provides guidelines that facilitate an implementation of the

MLD, the ML-VMS, and the MLDR. It shows the necessary structures needed

(VHT, MallocTable), input and out parameters, adjustments necessary to the page

table, adjustments necessary to the memory allocations and deallocations

functions, and suggests implementing the bookkeeping functionality in the memory

page replacement algorithm such as LRU.

6.3 MLD versus MLDR

Table 14 shows a quick reference for comparison between the MLD and the

MLDR provided in this dissertation. This table is provided as a quick reference.

Details about comparison criteria are already provided in this dissertation.

 Approach

Comparison criteria

MLD MLDR

Produce false negatives Yes Yes

Can handle false positives NO Yes

How to deal with possible crash Can delay crashes Can prevent crashes

www.manaraa.com

138

Can handle stale objects NO Yes

Provide run-time solution Yes/partial Yes/complete

False positive recovery Irrelevant Yes

Overhead Low Relatively high

Table 14: MLD versus MLDR

6.4 Future work

This dissertation opens different areas for future research as follows:

1. Although the MLD algorithm was tested in a simulation environment, it

would be better to test it on a real operating system.

2. A telemetry tool is suggested to monitor and tune the performance

parameters.

3. Repeat the experiments provided in this dissertation with actual trace from

real-world applications.

4. Find how MLD and MLDR can be parallelized and show the effect on

performance.

5. We believe that the ML-VMS can provide additional benefits other than

facilitating the solution of memory leak problem such as: solving the

problem of dangling pointer and memory corruption. Another research in

this area would reveal more results.

www.manaraa.com

139

References
1. Abdullahi, Saleh E. and Ringwood, Graem A., Garbage Collecting the

Internet: A survey of Distributed Garbage Collection, ACM, 1998

2. Bhansali, S., Chen, W., S., Edwards, A., Murray, R., Drinic, M.,

Mihocka, D. and Chau, J., Framework for Instruction-level Tracing and

Analysis of Program Executions, Microsoft Corporation, 2006

3. Bush, W. R., Pincus , J. D., and Sielaff D. J., A Static Analyzer for

Finding Dynamic Programming Errors, Software Practice and Experience,

2000

4. CERT/CC. CERT/CC Advisories. http://www.cert.org/advisories, 2007

5. Chilimbi, T. M., and Hauswirth M, Low-Overhead Memory Leak

Detection Using Adaptive Statistical Profiling, ACM, 2004

6. Choi, J.-D., Lee, K., Loginov, A., O’callahan, R., Sarkar, V., And

Sridharan, M. Efficient and precise datarace detection for multithreaded

object-oriented programs. In Proceedings of the ACMSIGPLAN

Conference on Programming Language Design and Implementation

(PLDI), 2002.

7. Cowan, C. et al, StackGuard: Automatic adaptive detection and

prevention of buffer overflow attacks. In Proceedings of the 7th USENIX

Security Symposium. 63–78, 1998

8. Denning, P. J., Thrashing: Its Causes and Preventions, In Proceedings of

the AFIPS National Conference, 1968

http://www.cert.org/advisories

www.manaraa.com

140

9. Dijkstra, E. W., Lamport, L., Martin, A.J, Scholton, C.S., and Steffens,

E.F.M, On-the-Fly Garbage Collection: An Exercise in Cooperation, ACM,

1978

10. Evans, D., Static Detection of Dynamic Memory Errors, ACM,1996

11. Engler, D. And Ashcraft, K. RacerX: Effective, static detection of race

conditions and deadlocks. In Proceedings of the 19th ACM Symposium on

Operating Systems Principles, 2003

12. Silberscatz, A. ,Galvin, P. and Gagne, G., Operating System Concepts,

7th edition, John Wiley and Sons, 2005

13. Goldschmidt, S.R. and Hennessy, J.L. The Accurecy of Trace-Driven

Simulations of Multiprocessors, ACM, 1993

14. Goetz B., Java Theory and Practice: A brief history of garbage collection,

http://www-128.ibm.com/developerworks/java/library/j-jtp10283/, 2003

15. Gross K. C., Bhardwaj V., and Bickford R., Proactive Detection of

Software Aging Mechanisms in Performance Critical Computers, Software

Engineering Workshop, 2002. Proceedings. 27th Annual NASA

Goddard/IEEE, 2002

16. Hallem, S., Chelf, B., Xie, Y., And Engler, D. A system and language for

building system specific, static analyses. In Proceedings of the ACM

SIGPLAN 2002 Conference on Programming Language Design and

Implementation (PLDI), 2002.

http://www-128.ibm.com/developerworks/java/library/j-jtp10283/

www.manaraa.com

141

17. Hangal, S. and Lam, M.S. Tracking down software bugs using automatic

anomaly detection. In Proceedings of the 22nd International Conference

on Software Engineering (ICSE) 291–301, 2002.

18. Hastings, R. and Joyce, B., Purify: Fast detection of memory leaks and

access errors. In Proceedings of the 1999 USENIX Winter Technical

Conference. 125–136.

19. Heine, D. L. and Lam, M. S. , A Practical Flow-Sensitive and Context-

Sensitive C and C++ Memory Leak Detector, ACM, 2003

20. Hirzel, M. and Diwan A., On the Type Accuracy of Garbage Collection,

ACM, 2000

21. Jones, Richard, the Garbage Collection Bibliography, Computing

Laboratory, 2003

22. Kline, Robert M., Memory Management Basices,

http://www.cs.wcupa.edu/~rkline/OS/MemManage.html, 2007

23. Marcus E. and Stern, Blueprints for High Availability, J Willey, New York,

2000

24. Musuvathi, M., Park, D., Chou, A., Engler, D. R., AND Dill, D. L. CMC:

A pragmatic approach to model checking real code. In Proceedings of the

5th Symposium on Operating System Design and Implementation (SOSP),

2002.

25. National Institute of Standards and Technology, Department of

Commerce, Software errors cost US economy $59.9 billion annually.

NIST NEWS Release 2002

http://www.cs.wcupa.edu/~rkline/OS/MemManage.html

www.manaraa.com

142

26. Nethercote, N., and Seward J. Valgrind: A program supervision

framework. In Proceedings of the 3rd International Workshop on Runtime

Verification (RV), 2003

27. Ostlund, H. A., Memory Leak Detection with the JRocket JVM: Unique

Capabilities with the right tools, SYS-CON publications INC, 2005

28. Parasoft Insure++,

http://www.parasoft.com/jsp/products/home.jsp?product=Insure&, 2007

29. Parlante, Nick, Pointers and Memory, http://cslibrary.stanford.edu,

2000

30. Quest Software, JProbe Memory Debugger: Eliminate Memory Leaks

and Execessive Garbage Collection,

http://www.quest.com/jprobe/debugger.aspx, Quest Software, 2007

31. Savage, S., Burrows, M., Nelson, G., Sobalvarro, P., AND Anderson,

T., Eraser: A dynamic data race detector for multithreaded programs.

ACM, 1997.

32. Shetty, R., Kharbutli, M., Solihin, Y., and Prvulovic, M., HeapMon: A

Low-leve, Automatic, and Programmable Memory Bug Detector, In the

proceedings of the first IBM PAC2 conference, 2004

33. Stern, U. And Dill, D. L. Automatic verification of the SCI cache

coherence protocol. In Conference on Correct Hardware Design and

Verification Methods (CHARME), 1995

34. Toomula, A. and Subhlok, J., Replicating Memory Behaviour for

Performance Prediction, ACM, 2004

http://www.parasoft.com/jsp/products/home.jsp?product=Insure&
http://cslibrary.stanford.edu/
http://www.quest.com/jprobe/debugger.aspx

www.manaraa.com

143

35. Uhlig, R. and Mudge, T. Trace-driven Memory Simulation: A survey,

ACM, 1997

36. US-CERT. US-CERT Vulnerability Notes Database.

http://www.kb.cert.org/vuls/, 2007

37. Watson, Gray. Debug Malloc Library v5.5.0, 2007

38. Wikipedia Encyclopedia, http://wikipedia.com, 2007

39. Wilson, Paul R., Jhonstone Mark S., Neely, Michael, and Boles David,

Dynamic Storage Allocation: A Survey and Critical Review, ACM, 1995

40. Wilson, Paul R., Uniprocessor Garbage Collection Techniques, ACM,

1992

41. Xie, Y. and Aiken A., Context – and Path – Sensitive Memory Leak

Detection, ACM, 2005

42. Zhou, Y. , Zhou, P. , Qin, F. , Liu, W. , and Torrellas, J., Efficient and

Flexible architectural Support for Dynamic Monitoring, ACM, 2005

43. Zorn, B. and Grunwald, D., Evaluating Models of Memory Allocation,

ACM, 1994

http://www.kb.cert.org/vuls/
http://wikipedia.com/

www.manaraa.com

144

Appendices
Appendix A: Input and Output Parameters of Simulation Program

In this appendix, we list the simulation input parameters in Table A.1 and

the simulation output parameters in Table A.2.

Parameter Description

SeedIntValue The seed value for the C++ random function, rand(), used
in the simulation program. With different seed values, due
to the nature of randomness, we may get different outputs.

NumberOfProcesses Number of processes used in the simulation. In order to
study the behavior of processes with different
characteristics, the simulation program can simulate
running (n) processes at the same time.

PageFileSize(KB) In demand paging, all processes use the same page file
size.

MaxRAMSize(KB) RAM size in KB; We can decrease size to get quick results;
small sized RAM causes pages to age quickly

LocalityOfRef Locality of reference(percentage)

ProbOfReferencingMem Probability of referencing a memory location

GenerateDumpFile If this flag is set the simulation generate a dump file on exit
for page table(s), heap(s), malloctable(s), and RAM in order
to provide full details about these structures.

GerateStatVsTime If this flag is set the simulation records statistics vs time

initHeapSize Initial heap size.

pageAgeThreshold Page age threshold value

pageAgeMul(K) A constant K explained in the dissertation.

AgingFlag 1: means invoke aging algorithm for this process 0 Not.
This flag is useful to compare two processes that have
same input parameters but one invokes aging alg. And the
other NOT.

Table A.1: Simulation input parameters

Parameter Description

#mallocs The number of calling malloc()

#MemRefs Number of times a virtual memory is referenced

#Frees Number of times free() is called

H_MaxSize Heap maximum size

H_FreeSize Heap free size

H_LeakedSize Heap leaked size

#H_Live_obj Number of live objects (reachable)

www.manaraa.com

145

#False NEG Number of false negatives; Real leaks that were NOT identified by
the aging algorithm

#FalsePOS Number of times a reference is made to an object previously
identified as a potential leak.

Table A.2: Simulation output parameters

www.manaraa.com

146

Appendix B: Benchmark Source code mldbench. H and mldbench.c

mldBench.h

//maximum allocations and deallocations made
#define MAX_TRANS 600000
//seed value to srand() function
#define SEED 12755765

#define ALLOCATED 1
#define FREE 0

//propability of allocation and deallocation
//eventually all allocated chunks will be deallocated before
//the bench exit this speed makes allocation faster the deallocation
#define P_MALLOC 0.50
#define P_FREE 0.50

//probability of the next size allocation
#define P_MIN_SIZE 0.85
#define P_MEDIUM_SIZE 0.10
#define P_LARGE_SIZE 0.05

/* 1-256 BYTE*/
#define MIN_SMALL_CHUNCK_SIZE 1
#define MAX_SMALL_CHUNCK_SIZE 256
/* 256 BYTE -64k BYTE*/
#define MIN_MEDIUM_CHUNCK_SIZE 257
#define MAX_MEDIUM_CHUNCK_SIZE 4*1024
/* 64k BYTE -65000KB*/
#define MIN_LARGE_CHUNCK_SIZE 4*1024 +1
#define MAX_LARGE_CHUNCK_SIZE 10*1024

mldBench.c

#include <stdlib.h>
#include <mcheck.h>
#include <assert.h>
#include "mldBench.h"

#ifdef DMALLOC
#include "dmalloc.h"
#endif

www.manaraa.com

147

long s=0;//cnt of small size chunks
long sSize=0;//accumulated size for small objects created
long m=0;//cnt of medium size chunks
long mSize=0;//accumulated size for medium objects created
long l=0;//cnt of large size chunks
long lSize;//accumulated size for large objects created

long allocated=0;//cnt of allocated chunks
long allocatedSize=0;//accumulated size for allocated objects
long hcnt=0;//cnt of location in array

long allocatedNotFreed=0;//cnt of allocated and not freed objects
long allocatedNotFreedSize=0;//Size of allocated and not freed objects
long freed=0;//cnt of freed objects
long freedSize=0;//size of freed objects

void printHeapHeader (char *allocationRef[], long allocationSize[], int
allocationStatus []);
void printHeapLine (long index, char trans,char *allocationRef[], long
allocationSize[]);
void printAllocedNotFreed (char *allocationRef[], long allocationSize[],int
allocationStatus[]);
void freeRemaingLiveObjects(char *allocationRef[], long allocationSize[],int
allocationStatus[]);
void printTrailer();

long getTheIndexOftheXthNotFreedElement(long x, int allocationStatus[]);
long getSize();

int main () {
 mtrace();
 srand(SEED);//set seed for random function
 /*define an array of all allocations*/
 char * allocationRef[MAX_TRANS];
 /* store allocated size for each allocated chunck*/
 long allocationSize[MAX_TRANS];
 /* allocation status 1: allocated 0: free */
 int allocationStatus[MAX_TRANS];

 printHeapHeader(allocationRef,allocationSize,allocationStatus);

 int trans;
 for (trans=0; trans<MAX_TRANS; trans++){
 if ((rand()%10000/10000.0) < P_MALLOC)
 {

www.manaraa.com

148

 //perform allocation
 //generate random size [MIN_CHUNK_SIZE, MAX_CHUNCK_SIZE]
ACCORDING TO GIVEN PROP.
 long size=getSize();
 allocationRef[hcnt]= (char *) malloc(size);
 assert(allocationRef!=NULL);

 allocationSize[hcnt]=size;
 allocationStatus[hcnt]=ALLOCATED; //allocated
 allocated++; allocatedNotFreed++;
 allocatedSize+=size; allocatedNotFreedSize+=size;//accumulate allocated
size
 //printf("A:%d: ",hcnt);
 printHeapLine(hcnt,'+',allocationRef,allocationSize);
 hcnt++;//next allocation cnt
 } else {
 /*perform deallocation*/
 //getRandom object to free
 long x,index=-1;
 if (allocatedNotFreed>0) {
 x =rand()%allocatedNotFreed +1; //select random object x to free
 //iterate to find x
 index=getTheIndexOftheXthNotFreedElement(x,allocationStatus);
 }//if
 if (index>-1) {
 //free object
 allocatedNotFreed--;
 allocatedNotFreedSize-=allocationSize[index];
 freed++;
 freedSize+=allocationSize[index];
 //printf("F:%d: ",index);
 printHeapLine(index,'-',allocationRef,allocationSize);
 allocationStatus[index]=FREE;//mark as freed
 free(allocationRef[index]);//remove object from heap
 allocationRef[index]=NULL;//null the pointer so as not to remain dangling
 }else {
 // printf("No available object to free...\n");//index=-1

 }
 }//if
 }//for
 freeRemaingLiveObjects(allocationRef, allocationSize, allocationStatus);
 printTrailer();
 //printAllocedNotFreed (allocationRef,allocationSize,allocationStatus);
 return 0;
}//main

www.manaraa.com

149

void printTrailer() {
 //list allocations

 printf ("#Small Objects: %d Size: %d \n",s,sSize);
 printf ("#Meduim Objects: %d Size: %d \n",m,mSize);
 printf ("#Large Objects: %d Size: %d \n",l,lSize);
 printf ("Alloc'd Objects: %d Size: %d Byte \n",allocated,allocatedSize);
 printf ("Freed objects: %d size: %d Byte \n\n",freed,freedSize);
 printf ("Stale:Alloc'd NotFreed: %d size: %d
Byte\n",allocatedNotFreed,allocatedNotFreedSize);
 }//printTrailer
long getTheIndexOftheXthNotFreedElement(long x, int allocationStatus[]){
 long index =-1;
 long i=0;
 long cnt=0;
 for (i=0;i<hcnt;i++) {
 if (allocationStatus[i]!=0) {//this object is allocated and Not Freed
 cnt++;
 if (cnt==x){
 //this is the intended object to be freed
 index=i;
 break;
 }//if
 }//if
 }//for
 return index;
}
void freeRemaingLiveObjects(char *allocationRef[], long allocationSize[],int
allocationStatus[]){
 long i=0;
 for (i=0;i<hcnt;i++) {
 if (allocationStatus[i]!=0) {//this object is still allocated and Not Freed
 //free it
 allocatedNotFreed--;
 allocatedNotFreedSize-=allocationSize[i];
 freed++;
 freedSize+=allocationSize[i];
 //printf("F:%d: ",index);
 printHeapLine(i,'-',allocationRef,allocationSize);
 allocationStatus[i]=FREE;//mark as freed
 free(allocationRef[i]);//remove object from heap
 allocationRef[i]=NULL;//null the pointer so as not to remain dangling
 }//if
 }//for

www.manaraa.com

150

void printHeapHeader (char * allocationRef[], long allocationSize[], int
allocationStatus[]){
 printf("MAX TRANS: %d\n",MAX_TRANS);
 int i;
 printf("location\tra\tsize\n");

}
void printAllocedNotFreed (char *allocationRef[], long allocationSize[],int
allocationStatus[]){
 long i=0;
 for (i=0; i<hcnt; i++){
 if (allocationStatus[i]!=0) {//allocated and not freed
 printf("%p\t%d\n", allocationRef[i],allocationSize[i]);
 }
 }//for
}
void printHeapLine (long index,char trans, char * allocationRef[], long
allocationSize[]){
 printf("%c\t%p\t%d\n",trans,
allocationRef[index],allocationSize[index]);
}
long getSize() {
 long size=1;//default value
 float propNextSize =rand()%100000/100000.00;
 if (propNextSize <P_MIN_SIZE) {
 //small size chunck
 size=rand()%(MAX_SMALL_CHUNCK_SIZE + 1 -
MIN_SMALL_CHUNCK_SIZE) + MIN_SMALL_CHUNCK_SIZE;
 s++; sSize+=size;
 }else if ((propNextSize-P_MIN_SIZE)<P_MEDIUM_SIZE){
 //MEDIUM size chunk
 size=rand()%(MAX_MEDIUM_CHUNCK_SIZE + 1 -
MIN_MEDIUM_CHUNCK_SIZE) + MIN_MEDIUM_CHUNCK_SIZE;
 m++; mSize+=size;
 }else {
 //large chunks are created
 size=rand()%(MAX_LARGE_CHUNCK_SIZE + 1 -
MIN_LARGE_CHUNCK_SIZE) + MIN_LARGE_CHUNCK_SIZE;
 l++; lSize+=size;
 }
 return size;

www.manaraa.com

151

APPENDIX C: SOURCE CODE FOR SIMULATION PROGRAM

Heap.h and Heap.cpp

#include <fstream.h>

#ifndef HEAP_H
#define HEAP_H

struct memChunk;
typedef memChunk * chunkPtrType;

class Heap {

 public: Heap();//constructor
 ~Heap();//destructor
 long getHeapMaxSize() {return HeapMaxSize;}
 long getHeapAllocatedSize() {return heapAllocatedSize;}
 long getHeapAllocatedObjects () { return heapAllocatedObjects;}
 long getHeapLeakedSize() { return heapLeakedSize;}
 long getHeapLeakedObjects() {return heapLeakedObjects;}
 long myMalloc(long ra,long inputSize,bool leaky);
 // allocate inputSize and return memRef (represent a pointer to a
chunk)
 bool myFree(long ra);//Free a chunk pointed to by memRef

 long getMemRefToFree();//returns an allocated and NOT leaky
chunk;
 long getMemRefToAcess(float locality, long prevRef);//returns an
allocated and NOT leaky chunk;
 bool markUnAccessable(long ra);

 void dumpHeap(long processID, ofstream &outputFile);
 private:
 void coalesce (chunkPtrType cur);//merge adjacent free chunks
 long HeapMaxSize; // max size of the Heap
 long heapAllocatedSize; // the allocated size from the Heap;
 long heapAllocatedObjects;
 long heapLeakedSize;
 long heapLeakedObjects;
 double getRandomProp();
 chunkPtrType Head;

};//end class
#endif

www.manaraa.com

152

Heap.cpp
#include "Heap.h"
#include "List.h"

#include <iostream.h>
#include <iomanip.h>
#include <assert.h>
#include <stdlib.h>

const int PRECISION=10000;//Four digits precision //used in getRandomProb()

struct memChunk {
 chunkPtrType previous;
 long ra;
 long memRef;
 long chunkSize;
 bool chunkIsAllocated;// true: allocated ; false: free
 bool leaky;//true leaky chunk; false NOT leaky
 chunkPtrType next;
};

List *list=new List();

Heap:: Heap()
{ //Heap initialization
 HeapMaxSize =0;
 heapAllocatedSize=0;
 heapAllocatedObjects=0;
 heapLeakedSize=0;
 heapLeakedObjects=0;
 Head=NULL;
Heap:: ~Heap() {}//Should be implemented to free the heap and return it to
memory
// otherwise a leak will occur
long Heap::myMalloc (long ra,long inputSize, bool leakyflag) {
 long memr=-1;
 heapAllocatedSize += inputSize;
 heapAllocatedObjects++;
 heapLeakedObjects++;
 heapLeakedSize += inputSize;//allocation not freed is assumed leak
 //the first allocation in an empty Heap
 if (Head==NULL) {
 Head = new memChunk; // first allocation
 assert (Head!=NULL);
 Head->ra=ra;

www.manaraa.com

153

 Head->memRef =0; // 0 is the first memRef in the
Heap
 Head->chunkSize = inputSize;//intially all heap is free
 HeapMaxSize+=inputSize;
 Head->chunkIsAllocated = true;//not allocated (free);
 Head->leaky=leakyflag;
 Head->next = NULL;
 Head->previous = NULL;
 return 0;//allocated in memory reference 0
 }

 // first fit allocation strategy
 chunkPtrType temp,prev, cur=Head;
 while (cur!=NULL) {
 if ((cur->chunkSize > inputSize) && (!cur->chunkIsAllocated))
{
 //this is a free chunk with first fit
 //split into two 1) Active (inputSize)// 2) Free
(chunkSize-inputSize)
 temp = new memChunk; //temp point to remaining
free chunck
 assert (temp!=NULL);
 temp->memRef = cur->memRef +inputSize;
 temp->chunkSize = cur->chunkSize -inputSize;
 temp->ra=0;
 temp->chunkIsAllocated =false; //remaining free
chunk
 temp->leaky =false;
 temp->next = cur->next;
 temp->previous =cur;

 cur->chunkSize =inputSize;
 cur->ra=ra;
 cur->chunkIsAllocated =true;//allocated
 cur->leaky =leakyflag;
 if (cur->next !=NULL) { cur->next->previous=temp; }

www.manaraa.com

154

 cur->next = temp;

 return cur->memRef;//return a pointer to newly
allocatd chunck
 }
 if ((cur->chunkSize == inputSize) && (!cur-
>chunkIsAllocated)) {
 cur->ra=ra;
 cur->chunkIsAllocated =true;//allocated
 cur->leaky = leakyflag;
 return cur->memRef;//return a pointer to this chunk
 }
 prev=cur;
 cur=cur->next;
 }//

 if (cur==NULL) {
 //Heap is Full; extend the Heap from the OS
 temp = new memChunk;
 //temp point to a chunk to be added to end of the
Heap
 assert (temp!=NULL);
 temp->memRef = HeapMaxSize;
 temp->chunkSize = inputSize;
 temp->ra =ra;
 temp->chunkIsAllocated =true;
 temp->leaky =leakyflag;
 temp->next = NULL;//Chunk at end of the heap;
 HeapMaxSize+=inputSize;//update the max size to
reflect the new value
 prev->next =temp;
 temp->previous = prev;
 return temp->memRef;

 }
 return memr;//should not reach this statement

www.manaraa.com

155

}

bool Heap::myFree(long ra){
 //True means freeing an allocated chunk
 //False means either freeing already free chunk or chunk is not available;

 chunkPtrType prev, cur=Head;
 while (cur!=NULL) {
 if (cur->ra ==ra) {
 if (cur->chunkIsAllocated) {
 //freeing allocatd chunk
 cur->chunkIsAllocated=false;
 cur->leaky=false; //free chunks are not leak
 cur->ra=0;//will remove rturn address
 heapLeakedObjects--;
 heapLeakedSize -= cur->chunkSize;
 coalesce(cur);//merge adjacent free chunks
 return true;//success;
 }else {

www.manaraa.com

156

 //Freeing already free chunck
 return false;//error;
 }

 }
 prev=cur;
 cur=cur->next;
 }//while
 return false;//ra is NOT available;
}

bool Heap::markUnAccessable(long ra){
 //set leaky of a chunk to true. this chunk will not be accessed
 chunkPtrType cur=Head;
 while (cur!=NULL) {
 if (cur->ra ==ra) {
 //passed ra must be to already allocated chunk
 cur->leaky=true;
 return true;
 }
 cur=cur->next;
 }//while
 return false;//ra is NOT available;
long Heap::getMemRefToFree() {
 //returns a reference to an allocated NOT leaky chunk;
 chunkPtrType cur=Head;
 long r,x=0;
 while (cur!=NULL) {//x counts the no of not leaky and allocated
 // can be accessed
 if ((!cur->leaky) && (cur->chunkIsAllocated)) {
 // allocated and NOT leaky can be choosed
 ++x;
 }//if
 cur=cur->next;
 }//while

 if (x>0) {
 r= rand () % x +1;
 // selecet random object allocated and Not Leaked

 cur=Head;

 long i=0;
 while (cur!=NULL) {

www.manaraa.com

157

 if ((!cur->leaky) && (cur->chunkIsAllocated))
 // allocated and NOT leaky can be choosed
 ++i;
 if (i==r) { //choosed object
 //return ref to any part of object
 return cur->memRef + rand()%cur-
>chunkSize;
 }//if
 }//if
 cur=cur->next;
 }//while
 }//if x>0 there is not leaky and allocated chunk can be returnd

 return -1;//no MemRef available to be freed

}//getMemRefToFree

long Heap::getMemRefToAcess(float locality,long prevRef) {
 double r;
 r=getRandomProp();
 if ((r<=locality) && (prevRef !=-1)) {
 //look up the next closest, to prevRef, allocated chunk Not Leaky
and return it
 chunkPtrType cur=Head;
 while ((cur!=NULL)&&(cur->memRef <=prevRef)) {//move to
location of prevRef
 cur= cur->next;
 }//while
 while (cur!=NULL){
 if ((!cur->leaky) && (cur->chunkIsAllocated)) {
 // allocated and NOT leaky can be choosed
 //return a memRef to any part of the object
 return cur->memRef + rand()%cur->chunkSize;
 }//if
 cur=cur->next;
 }//while
 }//if

 //The next line is reached if r > locality
 //return random memRef from Heap
 //The next block gurantee to return a random memRef to allocated not leaky
chunk

 return getMemRefToFree();

www.manaraa.com

158

}//getMemRefToAccess

void Heap::coalesce (chunkPtrType cur) {
 chunkPtrType pr, nx;
 pr=NULL;//assume initially no previous
 nx=NULL;//assume initially no next

 if ((cur->previous != NULL) && (!cur->previous->chunkIsAllocated)) {
 pr = cur->previous;// there is a previous free chunk
 }
 if ((cur->next != NULL) && (!cur->next->chunkIsAllocated)) {
 nx = cur->next;// there is a next free chunk
 }

 if ((pr == NULL) && (nx ==NULL)) return;//This is a stand alone free chunk

 if ((pr !=NULL) && (nx!=NULL)){//Preceeded by free chunk and followed by
free chunk
 pr->chunkSize += cur->chunkSize + nx->chunkSize;
 pr->next=nx->next;
 if (nx->next !=NULL) { nx->next->previous =pr;}
 nx->next = NULL;
 nx->previous=NULL;
 delete nx;
 nx=NULL;

 }
 else if ((pr !=NULL) && (nx==NULL)) {//preceeded by Free chunk
 nx=cur->next;
 pr->chunkSize += cur->chunkSize;
 pr->next=nx;
 if (nx!=NULL) { cur->next->previous =pr;}

 }else if ((pr ==NULL) && (nx!=NULL)){//Followed by free chunk
 pr=cur;
 cur=pr->next;
 nx=cur->next;
 pr->chunkSize += cur->chunkSize;
 pr->next=nx;
 if (nx!=NULL) { cur->next->previous =pr;}
 }

www.manaraa.com

159

 //delete node pointed to by cur
 cur->next=NULL;
 cur->previous=NULL;
 delete cur;
 cur=NULL;
 return;

}//merge adjacent free chunks

void Heap::dumpHeap (long processID, ofstream &dumpFile) {
 dumpFile <<"\nHeap DUMP for processID: " <<processID<<endl;
 dumpFile <<"Heap Max Size(Byte): " <<getHeapMaxSize() <<endl;
 dumpFile <<"Heap Allocated size(Byte): " <<getHeapAllocatedSize()
<<endl;
 dumpFile <<"# Heap Allocated Objects: "<< getHeapAllocatedObjects ()
<<endl;
 dumpFile <<"Leaked Size(Byte): " <<getHeapLeakedSize() <<endl;
 dumpFile <<"#Leaked Objects: " << getHeapLeakedObjects()<<endl;

 dumpFile<<setw(12)<<"MemRef"<<setw(12)<<"ra"<<setw(12)<<"Size"<<
setw(8)<<"Status"
 <<setw(12)<< "Lk_Sts"
 <<setw(12)<<"Prev"<< setw(12)<<"Next"<<endl;
 int i=0;
 for (chunkPtrType cur=Head; cur!=NULL; cur =cur->next) {
 dumpFile<<setw(12)<<cur->memRef
 <<setw(12)<<cur->ra
 <<setw(12)<<cur->chunkSize <<setw(8);
 if (cur->chunkIsAllocated) {
 dumpFile <<"Active";
 }else { dumpFile <<"Free"; }
 dumpFile <<setw(12);
 if (cur->leaky) {
 dumpFile<<"lky";
 }else { dumpFile <<"NotLky";}
 dumpFile <<setw(12);
;

www.manaraa.com

160

 if (cur->previous ==NULL) {
 dumpFile<<"NULL";
 }else { dumpFile <<cur->previous->memRef;}
 dumpFile <<setw(12);
 if (cur->next ==NULL) {
 dumpFile<<"NULL\n";
 }else { dumpFile <<cur->next->memRef <<endl;}
 i++;
 //if (i%5==0){break;}//donot perform complete dump
 }//for
 dumpFile <<"--";
double Heap::getRandomProp() {
 double r;
 r= rand() % PRECISION;
 r/=PRECISION;
 return r;
}
PTable.h

#include <fstream.h>
#include <assert.h>

#ifndef PTABLE_H
#define PTABLE_H

class PTABLE {

 public: PTABLE(int);//constructor
 ~PTABLE();//destructor
 long getNoOfPages () { return noOfPages; }
 long getPageSize () { return pageSize;}
 long getProcessSize(){ return processSize;}
 long getPtableTimeStamp(long pRef) { return
myPtableTimeStamp[pRef];}
 bool incrementSize (int chunkSize);
 bool pageRefInRAM (long pageRef);
 bool isDirty (long pRef) {return myPtableDB[pRef];}
 bool isPotLeak (long pRef) {return myPtablePL[pRef];}
 void setDiryBit (long pRef,bool status) {myPtableDB[pRef]=status;}
 void dumpPTABLE(long processID, ofstream &);
 void setPtableFrameRef (long pRef,long frameIndex) {
myPtableFrameRef[pRef]=frameIndex;}
 void setPtablePB(long pRef, bool status)
{myPtablePB[pRef]=status;}

www.manaraa.com

161

 void setPtablePL(long pRef, bool status)
{myPtablePL[pRef]=status;}
 void setPtableTimeStamp(long pRef, long timeStamp)
{myPtableTimeStamp[pRef]=timeStamp;}

 void setPtableLRUtimeStamp(long pRef,long
timeStamp){myPtableLRUtimeStamp[pRef]=timeStamp;}
 long getPtableLRUtimeStamp(long pRef){return
myPtableLRUtimeStamp[pRef];}

 void setPtableOnSwapSpc(long pRef, bool status)
{myPtableOnSwapSpc[pRef]=status;}

www.manaraa.com

162

 private:

 long noOfPages;
 int pageSize;
 long processSize;
 long * myPtableFrameRef;
 bool * myPtablePB;
 bool * myPtableOnSwapSpc; // 1 page on swap space; 0 NOT
 bool * myPtableDB;
 bool * myPtablePL;//potential Leak flag
 long * myPtableTimeStamp;
 long * myPtableLRUtimeStamp;
 bool firstVisit;//first visit to increment pagetable
 };//end class
#endif
PTable.cpp

#include "PTABLE.h"
#include <iostream.h>
#include <iomanip.h>
#include <math.h>
#include <stdlib.h>

PTABLE::PTABLE(int pSize) :pageSize(pSize)
{
 noOfPages=0;//no pages in current page table yet
 processSize =0;//initialy the size of the heap of process is zero
 cout <<"pagetab ins: "<<noOfPages<<endl;
 myPtableFrameRef = NULL;
 myPtablePB = NULL;
 myPtableOnSwapSpc= NULL;
 myPtableDB = NULL;
 myPtablePL = NULL;
 myPtableTimeStamp= NULL;
 myPtableLRUtimeStamp=NULL;
 firstVisit=true;//mark to indicate first visit to increment function
PTABLE:: ~PTABLE() {}
bool PTABLE::pageRefInRAM (long pageRef){
 return (myPtablePB[pageRef]);
bool PTABLE::incrementSize (int chunkSize){
 if (firstVisit) {//create first entry
 firstVisit=false;
 myPtableFrameRef = new long [noOfPages+1];
 assert(myPtableFrameRef !=NULL);
 myPtablePB = new bool [noOfPages+1];
 assert(myPtablePB !=NULL);

www.manaraa.com

163

 myPtableOnSwapSpc= new bool [noOfPages+1];
 assert(myPtableOnSwapSpc!=NULL);
 myPtableDB = new bool [noOfPages+1];
 assert(myPtableDB !=NULL);
 myPtablePL = new bool [noOfPages+1];
 assert(myPtablePL !=NULL);
 myPtableTimeStamp= new long [noOfPages+1];
 assert(myPtableTimeStamp!=NULL);
 myPtableLRUtimeStamp=new long[noOfPages+1];
 assert(myPtableLRUtimeStamp!=NULL);

 myPtableFrameRef [noOfPages]= 0;
 myPtablePB [noOfPages]= false;
 myPtableOnSwapSpc[noOfPages]= false;
 myPtableDB [noOfPages]= false;//initially not dirty
 myPtablePL [noOfPages]= false;
 myPtableTimeStamp[noOfPages]= 0;
 myPtableLRUtimeStamp[noOfPages]=0;

 noOfPages++;//first page is added
 }//if

 //increment processSize
 processSize += chunkSize;

 long newSizeInPages = (long)
ceil(static_cast<double>((double)processSize/(pageSize*1024)));
 if (newSizeInPages == noOfPages) {//no need to exted ptable. Space is
already available
 return true;
 }//if

 //extend page table by (newSizeInPages - noOfPages) pages
 //save pointers

 long * mPFR = myPtableFrameRef;
 bool * mPPB = myPtablePB;
 bool * mOSwS = myPtableOnSwapSpc;
 bool * mDB = myPtableDB;
 bool * mPL = myPtablePL;
 long * mTimeStamp=myPtableTimeStamp;
 long * mPtableLRUtimeStamp= myPtableLRUtimeStamp;

www.manaraa.com

164

 //allocate the required new size
 myPtableFrameRef = new long [newSizeInPages];
 assert(myPtableFrameRef !=NULL);
 myPtablePB = new bool [newSizeInPages];
 assert(myPtablePB !=NULL);
 myPtableOnSwapSpc= new bool [newSizeInPages];
 assert(myPtableOnSwapSpc!=NULL);
 myPtableDB = new bool [newSizeInPages];
 assert(myPtableDB !=NULL);
 myPtablePL = new bool [newSizeInPages];
 assert(myPtablePL !=NULL);
 myPtableTimeStamp= new long [newSizeInPages];
 assert(myPtableTimeStamp!=NULL);
 myPtableLRUtimeStamp=new long[newSizeInPages];
 assert(myPtableLRUtimeStamp!=NULL);

 for (long i=0; i<noOfPages; i++) {//copy old to new
 myPtableFrameRef [i]= mPFR[i];
 myPtablePB [i]= mPPB[i];
 myPtableOnSwapSpc[i]= mOSwS[i];
 myPtableDB [i]= mDB[i];
 myPtablePL [i]= mPL[i];
 myPtableTimeStamp[i]= mTimeStamp[i];
 myPtableLRUtimeStamp[i]= mPtableLRUtimeStamp[i];
 }
 //initialize extended pages
 for (long x=noOfPages; x< newSizeInPages; x++) {
 myPtableFrameRef [x]= 0;
 myPtablePB [x]= false;
 myPtableOnSwapSpc[x]= false;
 myPtableDB [x]= false;//extended area not dirty yet
 myPtablePL [x]= false;
 myPtableTimeStamp[x]= 0;
 myPtableLRUtimeStamp[x]=0;
 }

 //delete old copy to save space in Vir. Add. Space
 delete [] mPFR;
 delete [] mPPB;
 delete [] mOSwS;
 delete [] mDB;
 delete [] mPL;
 delete [] mTimeStamp;

www.manaraa.com

165

 // set # of pages to new value
 noOfPages = newSizeInPages;
 return true;
}void PTABLE::dumpPTABLE (long processID, ofstream & dumpFile) {
 dumpFile <<endl <<"....Page Table DUMP.... for process: " <<processID
<<endl;
 dumpFile <<setw(20) <<"# of pages : " <<setw(15)<<noOfPages <<endl;
 dumpFile <<setw(20) <<"Page Size(KB): " <<setw(15)<<pageSize
<<endl;
 dumpFile <<setw(20) <<"Process Size(Byte): "
<<setw(15)<<processSize<<endl;

 dumpFile <<setw(15) <<"Page Index"
 <<setw(15)<<"FrameRef"
 <<setw(15)<<"Status"
 <<setw(10)<<"OnSwapSpc"
 <<setw(10)<<"DirtyBit"
 <<setw(10)<<"PotLeak"
 <<setw(10)<<"TimeStamp"
 <<setw(10)<<"LRUtime"
 <<endl;

 for (int i=0;i<noOfPages;i++) {
 dumpFile <<setw(15)
 <<i
 <<setw(15)<<myPtableFrameRef[i]
 <<setw(15)<<myPtablePB[i]
 <<setw(10)<<myPtableOnSwapSpc[i]
 <<setw(10)<<((myPtableDB[i]==1)?"W":"R")
 <<setw(10)<<myPtablePL[i]
 <<setw(10)<<myPtableTimeStamp[i]
 <<setw(10)<<myPtableLRUtimeStamp[i]
 <<endl;
 //if (i%5==0){break;}//donot perform complete dump
 }//for
}
MallocTable.h

#include <fstream.h>

#ifndef MALLOCTABLE_H
#define MALLOCTABLE_H

struct memChunk;
typedef memChunk * chunkPtrType;

www.manaraa.com

166

class MallocTable {

 public: MallocTable();//constructor
 ~MallocTable();//destructor
 bool removeFromMallocTable(long ra);//remove a chunk from
MallocTable
 bool addToMallocTable(long ra,long inputMemRef, long
inputSize,bool leakyflag);
 void dumpMallocTable(long processID, ofstream &outputFile);
 long countLeaky(long &size);
 long countUnLeaky(long &size);
 void getUnreachableMemRefs(long page, long pageSize, long &
noOfRefs,long unReachable[]);
 bool markUnReachable(long ra);
 private:

 chunkPtrType Head, Tail;
 long objectsCreated, sizeObjectsCreated;
 long objectsRemoved, sizeObjectsRemoved;

};//end class
#endif
MallocTable.cpp

#include "MallocTable.h"

#include <iostream.h>
#include <iomanip.h>
#include <assert.h>
#include <stdlib.h>

const int PRECISION=10000;//Four digits precision //used in getRandomProb()

struct memChunk {
 chunkPtrType previous;
 long ra;
 long memRef;
 long chunkSize;
 bool leaky;//true leaky chunk; false NOT leaky
 chunkPtrType next;
};

MallocTable:: MallocTable() {
 Head=Tail=NULL;
 objectsCreated = 0;
 sizeObjectsCreated= 0;

www.manaraa.com

167

 objectsRemoved = 0;
 sizeObjectsRemoved= 0;
}
MallocTable::~MallocTable() { }

void MallocTable::dumpMallocTable (long processID, ofstream &dumpFile) {
 long size1=0, size2=0;
 dumpFile <<"\nMallocTable DUMP for processID: " <<processID<<endl;
 dumpFile <<"Leak objects : " <<countLeaky(size1) << " Unleaky : "
<<countUnLeaky(size2) <<endl;
 dumpFile <<"Leak objs Size: " <<size1 << " Unleaky size: "
<<size2 <<endl;
 dumpFile <<"objectsCreated: " <<objectsCreated << "
sizeObjectsCreated: " <<sizeObjectsCreated <<endl;
 dumpFile <<"objectsRemoved: " <<objectsRemoved << "
sizeObjectsRemoved: " <<sizeObjectsRemoved <<endl;

 dumpFile<<setw(12)<<"MemRef"
 <<setw(12)<<"ra"
 <<setw(12)<<"Size"
 <<setw(12)<< "Lk_Sts"
 <<setw(12)<<"Prev"<< setw(12)<<"Next"<<endl;
 int i=0;
 for (chunkPtrType cur=Head; cur!=NULL; cur =cur->next) {
 dumpFile<<setw(12)<<cur->memRef
 <<setw(12)<<cur->ra
 <<setw(12)<<cur->chunkSize;
 dumpFile <<setw(12);
 if (cur->leaky) {
 dumpFile<<"lky";
 }else { dumpFile <<"NotLky";}

 dumpFile <<setw(12);
 if (cur->previous ==NULL) {
 dumpFile<<"NULL";
 }else { dumpFile <<cur->previous->memRef;}
 dumpFile <<setw(12);
 if (cur->next ==NULL) {
 dumpFile<<"NULL\n";
 }else { dumpFile <<cur->next->memRef <<endl;}
 i++;
 if (i%5==0){break;}//donot perform complete dump
 }//for
 dumpFile <<"--";

www.manaraa.com

168

long MallocTable::countLeaky(long & size) {
 long cnt=0;
 chunkPtrType cur=Head;
 while (cur!=NULL) {

 if (cur->leaky) {cnt++; size += cur->chunkSize;}
 cur = cur->next;

 }//while
 return cnt;
bool MallocTable::markUnReachable(long ra){
 //mark a chunk as un reachable it can be freed by MLD
 //pass an ra to available chunck
 chunkPtrType cur=Head;
 while (cur!=NULL) {

 if (cur->ra == ra) {
 cur->leaky=true;
 return true;
 }
 cur = cur->next;
 }//while
 return false;//must not be reached
void MallocTable::getUnreachableMemRefs(long page, long pageSize, long &
noOfRefs,long unReachable[]) {
 long lowRef = page * pageSize * 1024; // low memref to look at
 long highRef= lowRef + pageSize *1024 -1; // high ref
 noOfRefs=0;

 chunkPtrType cur=Head;
 while (cur!=NULL) {
 if (cur->memRef < lowRef) { cur= cur->next; continue;}
 if (cur->memRef > highRef){ break;}//finish searching
 // the following memory refrences are in page
 if (cur->leaky) {
 //this chunk is unreachable and in aged page
 unReachable[noOfRefs]= cur->ra;
 noOfRefs++;
 }
 cur = cur->next;
 }//while
long MallocTable::countUnLeaky(long & size) {
 long cnt=0;
 chunkPtrType cur=Head;

www.manaraa.com

169

 while (cur!=NULL) {

 if (!(cur->leaky)) {cnt++; size +=cur->chunkSize;}

 cur = cur->next;

 }//while
 return cnt;
}
bool MallocTable::addToMallocTable(long ra,long inputMemRef, long inputSize,
bool leakyflag) {
 objectsCreated++; sizeObjectsCreated +=inputSize;

 chunkPtrType temp,prev, cur;

 cur=Head;
 prev=NULL;

 if (Head == NULL) {
 //first item in mallocTable
 temp = new memChunk;
 assert(temp!=NULL);
 temp->previous = NULL;
 temp->ra = ra;
 temp->memRef = inputMemRef;
 temp->chunkSize= inputSize;
 temp->leaky = leakyflag;
 temp->next = NULL;
 Head = temp;
 Tail = temp;
 return true;

 }
 while (cur!=NULL) {
 //find a place to insert chunk sorted
 if (cur->memRef >= inputMemRef) {break;}

 prev= cur;
 cur = cur->next;

 }//while
 if (cur==Head) {
 // add as the first item to mallocTable
 temp = new memChunk;
 assert (temp!=NULL);

www.manaraa.com

170

 temp->previous = NULL;
 temp->next = cur;
 temp->memRef = inputMemRef;
 temp->ra = ra;
 temp->chunkSize= inputSize;
 temp->leaky = leakyflag;
 cur->previous = temp;
 Head=temp;
 return true;
 }
 if (cur ==NULL) {
 // add as the last item to mallocTable
 temp = new memChunk;
 assert (temp!=NULL);
 temp->previous = prev;
 temp->next = NULL;
 temp->ra = ra;
 temp->memRef = inputMemRef;
 temp->chunkSize= inputSize;
 temp->leaky = leakyflag;
 prev->next = temp;
 Tail=temp;
 return true;
 }
 // add between prev and cur
 temp = new memChunk;
 assert (temp!=NULL);
 temp->previous = prev;
 temp->next = cur;
 prev->next = temp;
 cur ->previous = temp;
 temp->memRef = inputMemRef;
 temp->ra = ra;
 temp->chunkSize= inputSize;
 temp->leaky = leakyflag;
 return true;
}

bool MallocTable::removeFromMallocTable(long ra){
 objectsRemoved++;
 chunkPtrType prev, cur=Head;
 while (cur!=NULL) {
 if (cur->ra ==ra) {
 if (Head == Tail){
 //removing the only available element

www.manaraa.com

171

 Head->next = NULL;
 Head->previous=NULL;
 sizeObjectsRemoved +=Head->chunkSize;
 delete Head;
 Head=NULL;
 Tail=NULL;
 return true;
 }//
 if (cur==Head) {
 //removing first element
 Head = Head->next;
 Head->previous = NULL;
 cur->next = NULL;
 cur->previous=NULL;
 sizeObjectsRemoved +=cur->chunkSize;
 delete cur;
 cur=NULL;
 return true;

 } else if (cur==Tail) {
 //removing last element
 sizeObjectsRemoved +=Tail->chunkSize;
 Tail = Tail->previous;
 Tail->next = NULL;
 cur->next = NULL;
 cur->previous=NULL;
 delete cur;
 cur=NULL;
 return true;
 } else {
 // removing item in the middle
 sizeObjectsRemoved +=cur->chunkSize;
 prev->next = cur->next;
 cur->next->previous = prev;
 cur->previous=NULL;
 cur->next =NULL;
 delete cur;
 cur=NULL;
 return true;

 }

www.manaraa.com

172

 }//if
 prev=cur;
 cur=cur->next;
 }//while
 return false;//MemRef is NOT available;
}
RAM.h

#include <fstream.h>

#ifndef RAM_H
#define RAM_H

class RAM {

 public: RAM(long, int);//constructor
 ~RAM();//destructor
 long getMaxSize () { return RAMMaxSize;}
 long getNoOfFrames() {return noOfFrames;}
 long getPageSize() {return pageSize;}
 long getRAMProcess(long frameIndex) {return
myRAMProcesses[frameIndex];}
 bool getRAMStatus (long frameIndex) {return
myRAMStatus[frameIndex];}
 long getRAMPageRefs(long frameIndex){return
myRAMPageRefs[frameIndex];}
 bool existsFreeFrame (long & frameIndex);
 void setRAMPageRefs (long frameIndex, long pRef) {
myRAMPageRefs[frameIndex]=pRef;}
 void setRAMProcesses(long frameIndex, long proc) {
myRAMProcesses[frameIndex]=proc;}
 void setRAMStatus (long frameIndex, bool status){
myRAMStatus[frameIndex]=status;}
 void dumpRAM(ofstream &);
 private:

 long RAMMaxSize; // in KB, max size of the Heap
 long noOfFrames;
 int pageSize;//in KB
 long * myRAMPageRefs;
 long * myRAMProcesses;
 bool * myRAMStatus;
};//end class
#endif
RAM.cpp

#include "RAM.h"

www.manaraa.com

173

#include <iostream.h>
#include <iomanip.h>

const int RAM_ATT=3;//#columns in the Ram

RAM::RAM(long maxSize, int pSize) :pageSize(pSize)
{ RAMMaxSize = maxSize;
 noOfFrames = RAMMaxSize/pageSize;
 myRAMPageRefs = new long [noOfFrames];
 myRAMProcesses= new long [noOfFrames];
 myRAMStatus = new bool [noOfFrames];

 //initialize RAM
 for (int i=0;i<noOfFrames;i++) {
 myRAMPageRefs [i]=0;
 myRAMProcesses[i]=0;
 myRAMStatus [i]=false;
 }
}

RAM:: ~RAM() {}//Should be implemented to free the RAM and return it to
memory
 // otherwise a leak will occur
bool RAM::existsFreeFrame (long & frameIndex) {
 bool res=false;
 for (int i=0;i<noOfFrames;i++)
 if (!myRAMStatus[i]) {
 // frame is free
 res=true;
 frameIndex=i;//returns the index of free frame
 break;
 }
 return res;
}

void RAM::dumpRAM (ofstream & dumpFile) {
 dumpFile <<endl <<"....RAM DUMP...."<<endl;
 dumpFile <<setw(20) <<"Max Size (KB): " <<setw(15)<<RAMMaxSize
<<endl;
 dumpFile <<setw(20) <<"# of Frames : " <<setw(15)<<noOfFrames
<<endl;
 dumpFile <<setw(20) <<"Page Size(KB): " <<setw(15)<<pageSize
<<endl;

www.manaraa.com

174

 dumpFile <<setw(15) <<"Frame Index" <<setw(15) <<"PageRef"
<<setw(15)<<"Process"<<setw(15)<<"Status"<<endl;

 for (int i=0;i<noOfFrames;i++) {
 dumpFile <<setw(15)
 <<i
 <<setw(15)
 <<myRAMPageRefs [i]
 <<setw(15)
 <<myRAMProcesses[i]
 <<setw(15)
 <<myRAMStatus [i]
 <<endl;
 if (i%5==0){break;}//donot perform complete dump
 }//for
}//dumpRAM
mainSimProg.cpp

#include "Heap.h"
#include "RAM.h"
#include "PTABLE.h"
#include "MallocTable.h"

#include <iostream.h>

#include <fstream.h>
#include <stdlib.h>
#include <iomanip.h>
#include <time.h>
#include <math.h>

const int MAXPROCESSES=20; //Maximum number of processes
const int PR_ATT=12; //Process attributes
const int PRECISION=10000;//Four digits precision //used in getRandomProb()

long simTime=0;//Counter of simulation steps; represents time
int pageSize;//page size in KB
int nOfProcesses;//number of processes
long maxRAMSize;//Maximum RAM Size
int nOfFrames;// number of frames =maxRAMSize/pageSize
long maxSimSteps; //maximum number of memory refrences at which simulation
unsigned int seed; //seed value for random function
 // will stop this counter is esentially represents time
float localityOfRef;//locality of reference. How much likely a process is going to
 // to reference the same page next.

www.manaraa.com

175

float propOfReferencingMem;
int generateDumpFileFlag;// 1 generate dump file 0: DO NOT generate a file

long memRefrenceToAccess;
long TimePassBeforeWriteToStatVsTimeFile;
long max_Heap_Size;

char trans; //+ allocate - deallocate
long ra; //return address

enum {HEAPTHRESHOLD, NO_MALLOCS, NO_REFS,
NO_MARKED_UNACCESSABLE, LAST_ACCESSED_REF,
 NO_HITS, NO_FAULTS, FALSEPOSITIVES, PAGEOUTS, AGECNT,
AGEAVG,
 USE_AGING_FLAG, PAGEAGEMUL, OVERHEAD};

double processes[MAXPROCESSES][PR_ATT];
//Array of Processes
// index HEAPTHRESHOLD HEAPTHRESHOLD, if max heap size
>HEAPTHRESHOLD page is aged
// INDEX NO_MALLOCS How many times malloc is called
// index NO_REFS how many times memory refrences are made
// index NO_MARKED_UNACCESSABLE how many chunks marked
unAccessable
 //will not be
selected to be accessed
// index LAST_ACCESSED_REF Last reference accessed by a process
// index NO_HITS number of page hits; page found in RAM When requested
// index NO_FAULTS number of page faults
// index FALSEPOSITIVES // number of false positives for a process
// index PAGEOUTS // number of page outs;//if DB is set we need to page-
out the page
// index AGECNT // number of pages of Pot. Leak included in computing
the average
// index AGEAVG // the average age for pages marked with
Pot Leak flag
// index USE_AGING_FLAG // if set the process will use aging alg. Else NOT
// index PAGEAGEMUL // PAGE AGE MULTIPLIER
// index OVERHEAD //Overhead associated with calling Sweeper()
Heap *Heaps[MAXPROCESSES];//Heaps[0] the heap for process zero
 //Heaps[1] the heap for process one
and so on.
PTABLE* pageTable[MAXPROCESSES];// pageTable[0] the page table for
process 0
 // pageTable[1] the

www.manaraa.com

176

 page table for process 1 and so on
MallocTable* mallocTable[MAXPROCESSES];//mallocTable[0] mallocTable for
process 0
 //mallocTable[1]
mallocTable for process 1
RAM *ram;

void initialize();
void readInputFile(ofstream&);
void recordStatVsTime(int p,long SimTime,ofstream &StatVsTime);
void recordStatVsTimeHeader(ofstream &StatVsTime);
void dumpProcessesStat();

double getRandomProp();
void createDumpFile(int);
void performMemAccess(int);
long getMemRef(int p, float localityOfRef, long prevRef);
long getRandomVictimPage(long &victimPageProcess,long &frame);
void removeUnReachableObjectsForAgingPages(int pCnt,long simTime);

long getLRUvictimPage(long &,long &);

void setDirtyBit(int pCnt,long pageRef);
void swapPages(long victimPageProcess,long victimPage,
 long frame, int pCnt,long pageRef, long simTime) ;

long AgedPages=0;

int main () {
 initialize();
 srand(seed);
 long memAllocRef;
 bool proceed=true;
 int chunkSize;
 double r;

 ofstream StatVsTime ("StatVsTime.dat",ios::out);//Store Stat Vs Time
 if (!StatVsTime){
 cerr << "File StatVsTime.dat could not be created";
 exit(1);
 }
 ifstream traceFile ("tracefilesequal/trace10000Pm50_50_85_10_5",ios::in);
 if (!traceFile) {cerr<<"Can not open trace file\n";exit(3);}

www.manaraa.com

177

 recordStatVsTimeHeader(StatVsTime);
 //simulation loops until there are no more trace data

 while(proceed) {
 simTime++;
 for (int p=0; p<nOfProcesses; p++) {
 r = getRandomProp();
 if (r<= propOfReferencingMem) {
 performMemAccess(p);
 } else {//call malloc function
 proceed=false;
 if (traceFile>>trans>>ra>>chunkSize) {
 proceed=true;
 }
 if (proceed==false) {break;}
 if (trans=='+') {//perform allocation
 processes[p][NO_MALLOCS]++;
 //created chuncks assumed not leaky until they
reach the place of free
 memAllocRef= Heaps[p]->myMalloc
(ra,chunkSize,false);
 //record this allocation in mallocTable ; on
malloctable also they are not leaky
 mallocTable[p]-
>addToMallocTable(ra,memAllocRef,chunkSize,false);
 //increase the size of page table by chunkSize if
needed
 pageTable[p]->incrementSize (chunkSize);
 } else {// trans='-' call free() function
 //here set leaky to true on Heap and
malloctable.actual freeing is left
 //for the aging algorithm
 processes[p][NO_MARKED_UNACCESSABLE]++;
 // Heaps[p]->myFree (ra);//
 bool y= Heaps[p]->markUnAccessable(ra);
 //The object freed from heap is removed from
MallocTable
 // mallocTable[p]->removeFromMallocTable(ra);
 y=mallocTable[p]->markUnReachable(ra);

 }//if

 }//if r<propMemRef
 //here, we may record statistics from heap statistics VS simTime

www.manaraa.com

178

 if (simTime%TimePassBeforeWriteToStatVsTimeFile ==0) {
 recordStatVsTime(p, simTime,StatVsTime);
 cout <<simTime <<endl;
 }//if
 }//for
 // if (simTime==10) {break;}
 }//while
 cout <<"\nAged Pages: "<< AgedPages<<endl;
 dumpProcessesStat();

 createDumpFile(generateDumpFileFlag);

return 0;//program ends normally
}//main

void performMemAccess (int p) {

 long memRefToAccess, pRef,victimPageProcess,victimPage,frame;
 processes[p][NO_REFS]++;
 //generate a reference to a Live memory location to be accessed
 processes[p][LAST_ACCESSED_REF]= memRefToAccess=
 getMemRef(p, localityOfRef,(long)
processes[p][LAST_ACCESSED_REF]);
 //Address resolution. Convert memRef into virtual page index (pRef)
 if (memRefToAccess>0) {
 pRef = (long)
ceil(static_cast<double>((double)memRefToAccess/(pageSize*1024)))-1;}
if (pRef >0) {//A valid page refernce
 setDirtyBit(p,pRef);//update pagetable to reflect the randomly
 //generated dirtyFlag.
 //we need to indicate whether this is a
Read or Write access

 if (pageTable[p]->pageRefInRAM (pRef)) {
 //page is in RAM use it // a page hit occured
 processes[p][NO_HITS]++;
 //time stamp page being accessed for LRU algorithm
 pageTable[p]->setPtableLRUtimeStamp(pRef,simTime);
 } else {
 //page fault occured
 processes[p][NO_FAULTS]++;
 //add outgoing page to swap space of proces if it is not already
there //call by ref
 //rese time stamp..................
 long frameIndex;
 if (ram->existsFreeFrame (frameIndex)) {

www.manaraa.com

179

 //use it
 //cout <<"empty frame: "<<frameIndex <<endl;
 ram->setRAMPageRefs(frameIndex,pRef);
 ram->setRAMProcesses(frameIndex,p);
 ram->setRAMStatus(frameIndex,true);//occupied by pRef of
process p
 //place frameIndex in page table
 pageTable[p]->setPtableFrameRef(pRef,frameIndex);
 //Page is now available in page table*/
 pageTable[p]->setPtablePB(pRef,true);
 //time stamp page being accessed for LRU algorithm
 pageTable[p]->setPtableLRUtimeStamp(pRef,simTime);
 }else {
 //Choose a victim page using LRU selection algorithm
 //Global replacement strategy is used
 //victimPage
=getRandomVictimPage(victimPageProcess,frame);
 victimPage
=getLRUvictimPage(victimPageProcess,frame);
 //cout <<"vicPage: "<<victimPage<<" Frame: "<<frame <<endl;
 if (pageTable[victimPageProcess]-
>isDirty(victimPage)) {//dirty page
 //increment page outs per process

 ++processes[victimPageProcess][PAGEOUTS];
 //write to disk if dirty
 }//if

 swapPages(victimPageProcess,victimPage,frame,p,pRef,simTime);

 if ((processes[p][USE_AGING_FLAG]==1) &&
 (Heaps[p]->getHeapMaxSize() >
(processes[p][HEAPTHRESHOLD]*max_Heap_Size))) {
 //remove unreachable objects
 removeUnReachableObjectsForAgingPages(p,simTime);
 }//if
}//if (pRef>0)

}//performMemAccess
 void removeUnReachableObjectsForAgingPages(int pCnt,long simTime) {
 // this function identifies leaky objects and
 // remove them from the Heap and MallocTable
 const long Max =4096;//the max possible references in a page of 4Kb
 long noOfRefs=0;
 long unReachable[Max];
 long pages;double pageAge;

www.manaraa.com

180

 pages =pageTable[pCnt]->getNoOfPages();
 for (int page=0; page<pages; page++){
 if (pageTable[pCnt]->isPotLeak (page)){
 pageAge =simTime - pageTable[pCnt]-
>getPtableTimeStamp(page);
 //cout <<"simTime:"<<simTime<<" pTs:"
<<pageTable[pCnt]->getPtableTimeStamp(page)<<" pAge:"<< pageAge<<endl;
 if ((pageAge >(processes[pCnt][PAGEAGEMUL] *
processes[pCnt][AGEAVG])) &&
 (processes[pCnt][AGEAVG]>0))
 {
 ++AgedPages;
 //find chunks in this page and mark them as
potential garbage
 processes[pCnt][OVERHEAD]++;// inc
 pageTable[pCnt]->setPtablePB (page,false);
 pageTable[pCnt]->setPtablePL (page,false);
 pageTable[pCnt]->setDiryBit(page,false);
 pageTable[pCnt]-
>setPtableOnSwapSpc(page,false);
 //UNREACHABLE OBJECTS MUST BE
FREED FROM
 //1)HEAP AND 2)MALLOCTABLE
 //fllowing lines are the Sweeper()
 noOfRefs=0;
 mallocTable[pCnt]-
>getUnreachableMemRefs(page,pageSize,noOfRefs,unReachable);
 for (int i=0;i<noOfRefs;i++) {
 //remove from malloctable
 mallocTable[pCnt]-
>removeFromMallocTable(unReachable[i]);
 //remove from Heap
 Heaps[pCnt]->myFree(unReachable[i]);
 }//for
 }//if
 }//if
 }//for int page

}//removeUnReachableObjectsForAgingPages

void swapPages(long victimPageProcess,long victimPage,
 long frame, int pCnt,long pageRef, long simTime) {
 //clear presence bit from old page//
 pageTable[victimPageProcess]->setPtablePB(victimPage,false);

www.manaraa.com

181

 //mark swap-out page as potential leak
 pageTable[victimPageProcess]->setPtablePL(victimPage,true);
 pageTable[victimPageProcess]-
>setPtableTimeStamp(victimPage,simTime);

 //load to ram
 ram->setRAMPageRefs (frame,pageRef);//store page in RAM
 ram->setRAMProcesses(frame,pCnt); //store to which process
 ram->setRAMStatus (frame,true);//mark page in RAM as occupied
 //update page table to point to new page
 pageTable[pCnt]->setPtableFrameRef (pageRef,frame);//load new
pageRef to PT
 pageTable[pCnt]->setPtablePB(pageRef,true);//Page is now present
 //time stamp page being accessed for LRU algorithm
 pageTable[pCnt]->setPtableLRUtimeStamp(pageRef,simTime);

 if (pageTable[pCnt]->isPotLeak (pageRef)) {
 //include this pageRef in the accumulated Page_Age_Threshold

 processes[pCnt][AGEAVG]=((processes[pCnt][AGECNT]*processes[pCnt]
[AGEAVG])
 + (simTime-pageTable[pCnt]-
>getPtableTimeStamp (pageRef)))

/++processes[pCnt][AGECNT];

 }
 //clear potential leak flag if page is swapped-in
 //since we are accessing a pRef; clear PL bit and time stamp
 pageTable[pCnt]->setPtablePL(pageRef,false);
 pageTable[pCnt]->setPtableTimeStamp(pageRef,0);//if PL is false no
meaning of timeStamp;stm. can be removed

}//swapPages

long getMemRef(int p, float localityOfRef, long prevRef) {
 //This function gets a memory reference to be acccessed

 return Heaps[p]->getMemRefToAcess(localityOfRef,(long)
processes[p][LAST_ACCESSED_REF]);

}//getMemRef

www.manaraa.com

182

long getLRUvictimPage(long &victimPageProcess,long &frame) {
 //Global replacement strategy is used
 //select the page with minimum LRU time
 //The implementation is not fast/ uses sequential search
 //but it will NOT affect the result of our simulation
 long min = 99999999; //initialize to a large number
 long victim=0;
 victimPageProcess=ram->getRAMProcess(0);//choose page 0 process 0
as default

 for (int i=0;i< ram->getNoOfFrames();i++) {
 if (ram->getRAMStatus(i)) {// this is an occupied frame
 if (pageTable[ram->getRAMProcess(i)]-
>getPtableLRUtimeStamp (ram->getRAMPageRefs(i))<min) {
 min= pageTable[ram->getRAMProcess(i)]-
>getPtableLRUtimeStamp (ram->getRAMPageRefs(i));
 victim=ram->getRAMPageRefs(i);
 victimPageProcess=ram->getRAMProcess(i);
 frame=i;
 }
 }//if
 }//

 return victim;

}//getLRUvictimPage
long getRandomVictimPage(long &victimPageProcess,long &frame) {

 // a frame is selected randomly from the RAM// This implementation is fast
for our simulation
 // we could use another replacement strategy like LRU,or LFU
 long victim=0;
 long r;
 r = rand() % ram->getNoOfFrames();// r is a frame index of a choosed
victim frame

 victim=ram->getRAMPageRefs(r);
 victimPageProcess=ram->getRAMProcess(r);
 frame=r;

 return victim;

double getRandomProp() {
 double r;
 r= rand() % PRECISION;
 r/=PRECISION;

www.manaraa.com

183

 return r;
}void recordStatVsTimeHeader(ofstream &StatVsTime) {
 StatVsTime<<endl;
 StatVsTime
 <<setw(10)<<"Process"
 <<setw(10)<<"Time"
 <<setw(15)<<"HEAPTHRESHOLD"
 <<setw(15)<<"PAGEAGEMUL"
 <<setw(15)<<"UseAgAlg?"

 <<setw(15)<<"#Mallocs"
 <<setw(15)<<"#Refs"

 <<setw(15)<<"#MrkUNacc"

 <<setw(15)<<"H_MaxSize"

 <<setw(15)<<"#H_leakedObjs"
 <<setw(15)<<"#page Hits"
 <<setw(15)<<"#page Faults"
 <<setw(15)<<"#FalsePos"
 <<setw(15)<<"#PageOuts"
 <<setw(15)<<"#PgsINcInAVG"
 <<setw(15)<<"Page AVG"
 <<setw(15)<<"OverHead"
 <<endl;
}void recordStatVsTime(int p, long time,ofstream &StatVsTime){

 StatVsTime
 <<setw(10)<<p
 <<setw(10)<<time
 <<setw(15)<<processes[p][HEAPTHRESHOLD]
 <<setw(15)<<processes[p][PAGEAGEMUL]
 <<setw(15)<<processes[p][USE_AGING_FLAG]
 <<setw(15)<<processes[p][NO_MALLOCS]
 <<setw(15)<<processes[p][NO_REFS]
 <<setw(15)<<processes[p][NO_MARKED_UNACCESSABLE]
 <<setw(15)<<Heaps[p]->getHeapMaxSize () //maxSize

 <<setw(15)<<Heaps[p]->getHeapLeakedObjects ()

 <<setw(15)<<processes[p][NO_HITS]
 <<setw(15)<<processes[p][NO_FAULTS]
 <<setw(15)<<processes[p][FALSEPOSITIVES]
 <<setw(15)<<processes[p][PAGEOUTS]

www.manaraa.com

184

 <<setw(15)<<processes[p][AGECNT]
 <<setw(15)<<processes[p][AGEAVG]
 <<setw(15)<<processes[p][OVERHEAD]

 <<endl;
void initialize() {
 cerr <<"Simulation may take time depending on the input
parameters.\nPlease wait....\n";

 ofstream outputFile ("OutputFile.dat",ios::out);//Store Page refrences to a
file
 if (!outputFile){
 cerr << "File outputFile.dat could not be opened";
 exit(1);
 }

 readInputFile(outputFile);//Reads Simulation parameters
 srand(seed);//seed random function with time in milliseconds
void readInputFile(ofstream &outputFile) {
 ifstream inputFile ("inputFile.dat",ios::in);
 if (!inputFile){
 cerr << "File inputFile.dat could not be opened";
 exit(1);
 }
 char filler0[25], filler [25],filler1[25],filler3[25],filler4[55],filler5[55],filler7[30];
 inputFile >>filler>>seed;
 outputFile
<<setprecision(2)<<setiosflags(ios::left|ios::fixed|ios::showpoint)<<setw(20)<<"Se
ed val="<<setw(20)<<seed<<endl;
 inputFile >>filler>>pageSize;
 outputFile <<setw(20)<<filler<<setw(20)<<pageSize<<endl;
 inputFile>>filler>>nOfProcesses;
 outputFile <<setw(20)<<filler<<setw(20)<<nOfProcesses<<endl;
 inputFile>>filler>>maxRAMSize;
 outputFile <<setw(20)<<filler<<setw(20)<<maxRAMSize<<endl;
 nOfFrames =maxRAMSize/pageSize;
 outputFile<<setw(20)<<"No of Frames="<<setw(20)<<nOfFrames<<endl;

 inputFile>>filler>>localityOfRef;
 outputFile <<setw(20)<<filler<<setw(20)<<localityOfRef<<endl;

 inputFile>>filler5>>propOfReferencingMem;

www.manaraa.com

185

 propOfReferencingMem /=100;
 outputFile <<setw(30)<<filler5<<setw(12)<<propOfReferencingMem<<endl;

 inputFile>>filler7>>generateDumpFileFlag;
 outputFile <<setw(20)<<filler7<<setw(20)<<generateDumpFileFlag<<endl;
 inputFile>>filler5>>TimePassBeforeWriteToStatVsTimeFile;

outputFile<<setw(36)<<filler5<<setw(7)<<TimePassBeforeWriteToStatVsTimeFil
e<<endl;
 inputFile>>filler5>>max_Heap_Size;
 outputFile<<setw(36)<<filler5<<setw(7)<<max_Heap_Size <<endl;

 //convert from MB to byte
 max_Heap_Size = max_Heap_Size *1024 * 1024;
 inputFile>>filler0>>filler1>>filler3>>filler4;

 long x1;
 while (inputFile>>x1){
 inputFile>>processes[x1][HEAPTHRESHOLD]
 >>processes[x1][PAGEAGEMUL]
 >>processes[x1][USE_AGING_FLAG];

 //intialize a heap for eah process.
 Heaps[x1]= new Heap();
 //initialize a page table for each Process
 pageTable[x1] = new PTABLE (pageSize);
 mallocTable[x1]= new MallocTable();

 //intialize attributes
 processes[x1][NO_MALLOCS]=0;
 processes[x1][NO_REFS]=0;
 processes[x1][NO_MARKED_UNACCESSABLE]=0;
 processes[x1][LAST_ACCESSED_REF]=0;
 processes[x1][NO_HITS]=0;
 processes[x1][NO_FAULTS]=0;
 processes[x1][FALSEPOSITIVES]=0;
 processes[x1][PAGEOUTS]=0;
 processes[x1][AGECNT]=0;
 processes[x1][AGEAVG]=0;
 processes[x1][OVERHEAD]=0;
 //intialize RAM;
 ram = new RAM(maxRAMSize,pageSize);

www.manaraa.com

186

}//ReadInputFile
void dumpProcessesStat(){
 ofstream outputFile ("OutputFile.dat",ios::app);//Store Page refrences to a
file
 if (!outputFile){
 cerr << "File OutputFile.dat could not be created";
 exit(1);
 }
 outputFile<<endl;
 outputFile
 <<setw(10)<<"Process"
 <<setw(15)<<"HEAPTHRESHOLD"
 <<setw(15)<<"PAGEAGEMUL"
 <<setw(15)<<"UseAgAlg?"
 <<setw(15)<<"#Mallocs"
 <<setw(15)<<"#MemRefs"
 <<setw(15)<<"#MrkUnacc"
 <<setw(15)<<"H_MaxSize"

 <<setw(15)<<"#H_Live_obj"
 <<setw(15)<<"#page Hits"
 <<setw(15)<<"#page Faults"
 <<setw(15)<<"#FalsePos"
 <<setw(15)<<"#PageOuts"
 <<setw(15)<<"#PgsINcInAVG"
 <<setw(15)<<"Page AVG"
 <<setw(15)<<"OverHead"
 <<endl;

 for (int i=0 ; i<nOfProcesses;i++) {
 outputFile
 << setw(10)<<i
 <<setw(15)<<processes[i][HEAPTHRESHOLD]
 <<setw(15)<<processes[i][PAGEAGEMUL]
 <<setw(15)<<processes[i][USE_AGING_FLAG]
 <<setw(15)<<processes[i][NO_MALLOCS]
 <<setw(15)<<processes[i][NO_REFS]
 <<setw(15)<<processes[i][NO_MARKED_UNACCESSABLE]
 <<setw(15)<<Heaps[i]->getHeapMaxSize () //maxSize

 <<setw(15)<<Heaps[i]->getHeapLeakedObjects ()

 <<setw(15)<<processes[i][NO_HITS]
 <<setw(15)<<processes[i][NO_FAULTS]
 <<setw(15)<<processes[i][FALSEPOSITIVES]
 <<setw(15)<<processes[i][PAGEOUTS]

www.manaraa.com

187

 <<setw(15)<<processes[i][AGECNT]
 <<setw(15)<<processes[i][AGEAVG]
 <<setw(15)<<processes[i][OVERHEAD]
 <<endl;
 }
 outputFile<<endl;
}

void createDumpFile(int flag) {
 //clear old file
 ofstream dumpFile ("dumpFile.dat",ios::out);//dump page tables, heaps,
and ram to file
 if (!dumpFile){
 cerr << "File dumpFile.dat could not be created";
 exit(1);
 }
 if (flag==1) {//
 for (int x=0;x<nOfProcesses;x++) {

 //dumpFile <<"\n...."<<endl;
 pageTable[x]->dumpPTABLE (x,dumpFile);
 //dumpFile <<"\n...."<<endl;
 Heaps[x]->dumpHeap (x,dumpFile);
 mallocTable[x]->dumpMallocTable(x,dumpFile);
 //dumpFile <<"\n...."<<endl;
 }
 ram->dumpRAM(dumpFile);

void setDirtyBit(int pCnt,long pageRef){
 //propability of read =50% of write 50%
 double r = getRandomProp();

 if (r <= 0.5) {
 pageTable[pCnt]->setDiryBit(pageRef,false);//Read
 }else{
 pageTable[pCnt]->setDiryBit(pageRef,true);//Write
List.h

#include<iostream.h>
#ifndef LIST_H
#define LIST_H

struct listChunk;
typedef listChunk * listPtrType;

www.manaraa.com

188

class List {

public: List(){ listHead=NULL;};//constructor
 ~List();//destructor
 bool isEmpty() {return listHead==NULL;}
 void add(long ref);
 long getItem();//get the first item and remove from list
 void dumpList();
 private:
 listPtrType listHead;

};//end class
#endif
List.cpp

#include "List.h"
#include <stdlib.h>
#include <iostream.h>

struct listChunk {
 long memRef;
 listPtrType next;
};

void List::dumpList () {
 listPtrType cur =listHead;
 while (cur!=NULL) {
 cout <<cur->memRef <<endl;
 cur=cur->next;
 }
}//dumpList

void List::add (long ref) {
 if (listHead==NULL) {
 //first item to add
 listHead= new listChunk;
 listHead->memRef =ref;
 listHead->next=NULL;
 }else {
 listPtrType temp;
 temp=new listChunk;
 temp->memRef =ref;
 temp->next =listHead;
 listHead=temp;
 }

www.manaraa.com

189

long List::getItem(){
 long first=-1;
 listPtrType cur=listHead;

 if (!isEmpty()){
 first = cur->memRef;
 listHead=listHead->next;
 delete cur;
 cur=NULL;
 }
 return first;

