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Abstract 

 
Memory leak problem is one of the major causes of software failures. 

Current approaches for solving memory leak problem are not thorough; they either 

detect memory leak in development environments using source code, re-linking, 

or recompilation or they only remove unreachable objects in run-time garbage-

collected environments. These approaches do not provide a complete run-time 

solution. 

This dissertation provides two new approaches for memory leak detection 

and recovery in addition to a novel approach for dynamic memory management. 

The first is memory leak detection (MLD) algorithm. This algorithm reflects both of 

the physical and virtual behavior of memory allocation and benefits from the 

hardware support available for tracking physical pages in real memory in order to 

detect leak in virtual address space. The latter is a memory leak detection and 

recovery (MLDR) algorithm based on a novel approach for dynamic memory 

management, a multi-layer virtual memory system (ML-VMS). The ML-VMS 

reorganizes the currently used dynamic memory management and dynamic 

memory allocation mechanisms in order to solve or overcome the problem of 

memory leak 

The MLD uses a conservative approach to remove unreachable objects and 

save address space. It delays possible application crashes due to the lack of virtual 

memory, but it can not solve the problem of stale objects. The MLDR provides a 

thorough run-time solution. It handles the problem of false positives, false 

negatives, and prevents target applications from crash due to the lack of virtual  
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memory given a well-tuned parameters and that a target application can 

tolerate an additional overhead. Both approaches are trace-driven simulated in 

order to provide a proof of concept and show the algorithms’ validity. Our approach 

is compared to some current approaches for memory leak detection and recovery 

and is shown how it outperforms these approaches in providing a complete run-

time solution. The MLDR is recommended for mission critical applications that 

have to live for a long time and can tolerate a controllable overhead cost. 

 

Key words: multi-layer virtual memory system, memory leak detection, memory 

leak recovery, virtual memory, memory aging, and dynamic memory allocation. 
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ABSTRACT IN ARABIC 

تسرب الذاكرةنظام مبتكر متعدد الطبقات للذاكرة الافتراضية لحل مشكلة   

 إعداد 

احمد علي عتوم   

دكتورـراف الــاش  

 محمد عصام ملكاوي

Arabic Summary 

 سباب الرئيسة في فشل واخفاق البرمجيات. ان الاساليب المتبعةحد الأأ الذاكرة  تسربة لتعتبر مشك

من انها غير كامله فهي اما تكتشــا المشكلة خ م مرحلة تطو ر البرمجيات لحل هذه المشـكلة تعا   حاليا

باســـتمدام البرناملم المصـــدري وتســـتمدم اعادة الرب  والترتمة واما تقوم بحذف الكييونات التي لا  كن 

حالية لالوصــوم اليها ااياا التيفيذ وكه هو متبفي في بي ة البرمجيات الجامعة للمهم ت وبالتاف فان الحلوم ا

 .شام  للمشكلة تيفيذ ا لا تقدم ح 

تقدم هذه الاطروحة طر قتين تد دتين لاكتشـاف المشـكلة ومعالجتها بالاضــافه ال اسلوب مبتكر 

. تعكس هذه تسرـــبهليظـام ادارة الـذاكرة الـد ياميا. الطر قة الاول هي خوارةمية اكتشـــاف الذاكرة الم

ز ائية والذاكرة الافتراضـــية في حجز الكييونات وتســـتفيد من الطر قـة اســـلوب عمل كل من الذاكرة الفي

ــبالمعدات المتوفرة لمتابعة الصـــفحات الفيز ائية في  لذاكرة في ا الذاكرة الحقيقية من اتل اكتشـــاف تسرـ

لطر قة ومعالجتها. تبيى هذه ا خوارةمية اكتشاف الذاكرة المتسربهالذاكرة الافتراضية. والطر قة الثانية هي 

دارة باضافة طبقة تد دة ليظام الاسلوب  قوم هذا االمتعدد الطبقات لادارة الذاكرة.  المبتكر سلوبالاعلى 

 شكلة.بحيث  سمح بحل شامل للم الافتراضية الذاكرة

تســـتمدم الطر قة الاول اســـلوب تحفظي في حذف الكييونات التي لا  كن الوصـــوم اليها من 

ســـمح للبرناملم باســـتمرار التيفيذ. تطيل هذه الطر قة في عمر البرناملم من اتل توفير مســـاحة اضـــافية ت

ــة لا  ــاحة  المطلوبة من الذاكرة لكيها في الوفس نفس ــل المحتمل نتيجة لعدم توفر المس البرناملم وتؤخر الفش

 تحل من مشكلة 
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ةمن بعيــد و حتمــل ان  قوم الكييونــات المتعفيــه وهي الكييونــات التي حجزهــا البرنــاملم ميــذ 

مها مرة اخرى. تقدم الطر قة الثانية ح  اشمل للمشكلة فهي تحل مشكلة الكييونات التي لا  كن باستمدا

الوصــوم اليها بالاضــافة ال الكييونات المتعفيه. كه انها تســتطيفي ان ليفي فشــل البرمجيات لانها ت ــمن ان 

. تم على الافراص الصـــلبةاهية ان لد يا مســـاحة غير متي على اعتباردائما  متوفرةالمســـاحة المطلوبه للحجز 

 وتم مقارنه الاســلوب الجد د مفي بعا الحلوم الحالية الطر قتين باســتمدام التحليل وبراملم المحاكاةاابات 

 في باســتمدام الاســلوب الجد د يصــح  لمشــكلة. لوبيان مدى نجاح الاســلوب الجد د في ا جاد حل شــامل 

 طو لة. لفترة ةمييةو في  ان تبقى في حالة تيفيذتتطلب لبرمجيات التي ا
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CHAPTER ONE 
INTRODUCTION 

This chapter introduces the problem to be addressed, gives justification and 

purpose of this work, and lists the major questions, contributions and the basic 

structure of the dissertation. 

1.0 Introduction 

Due to time-to-market pressures, limited availability of resources, cost 

reduction, increased demand of software, and software’s inherent complexity, 

software producers often release their products without enough testing and without 

having their products undergo enough necessary quality assurance constraints. 

Memory leak is one of the famous notorious memory bugs that dominate the US-

CERT and CERT/CC vulnerability reports (US-CERT and CERT/CC, 2007). 

According to Marcus and Stern (Marcus and Stern, 2000), Software bugs in 

deployed codes account for as much as 40% of computer system failures. The 

NIST (National Institute of Standards and Technology, Department of Commerce, 

2002) estimated that the software bugs cost the U.S. economy $59.9 billion 

annually, or 0.6 % of GDP.  In this dissertation, we concentrate on one of the major 

software bugs called memory leak. 

In most general terms, memory leak occurs because of 1) unreachable 

objects: objects exist because the program either unintentionally or maliciously 

neglects to free heap-allocated objects and therefore these objects are lost and 2) 

useless objects: a program keeps references to objects that are never used again.  
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Memory leak is one of the major causes of software failures. Memory leak 

is mainly serious in long live applications. Memory leak slowly consumes available 

memory, causing performance degradation and crashing the system. Memory leak 

is hard to detect since it has few symptoms other than slow and steady increase 

in memory consumption. Memory leak occurs because some imperative 

languages place the responsibility of memory allocation and reclamation on the 

programmers. Programmers must use reclamation methods such as dispose, 

delete, or free system calls. This explicit store management leads to two common 

bugs: memory leak and dangling reference problem. Memory leak may lead to 

running out of virtual address space which results in computation failure. Another 

consequence of memory leak is thrashing. Memory leak can cause extreme 

nonlocality of reference as live cells are dispersed over a large virtual address 

space. 

Current approaches for solving memory leak problem are not thorough; they 

either detect memory leak in development environments as performed by static 

analysis tools which requires the existence of source code or they garbage collect 

unreachable objects as performed by garbage collectors. These collectors provide 

partial solution only in the languages that was designed with garbage collection in 

mind. There is no complete run-time solution available. 

 In this dissertation, we explore the concept of aging in the paged physical 

space for the detection of potential leaks in the virtual space. We also present a  
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novel approach for dynamic memory management, a multi-layer virtual 

memory system. The approach reorganizes the dynamic memory allocation space 

in a manner that enables a complete run-time resolution of memory leak.  

1.1 The Statement of the Problem 

1.1.1 Problem Definition 

 Memory leak often results in failures especially in long live processes. A 

software application may hang or result in an overall system crash or global system 

performance degradation due to memory leaks. Different businesses can deal with 

software failures in different ways. In some cases, system administrators simply 

restart the system whenever the memory leaks to a point where a crash is eminent 

or performance degrades beyond an acceptable level.  Systems with critical 

applications can not tolerate the cost of frequent shutdowns or performance 

degradation. The consequences of unresolved memory leaks in real-time systems 

can have a direct impact on human safety, security and business sustainability.   

Currently, there are some solutions to memory leak problem, but these 

solutions are not thorough, suffer from performance degradation, and there is no 

complete run-time solution. The current dynamic memory management 

mechanisms allow these problems to exist and add constraints to potential 

solutions. Reorganizing the current dynamic memory management system into a 

multi-layer virtual memory system provides a basis for a fundamental solution to 

memory leak and other problems.  
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The purpose of this study is to present a novel approach for dynamic 

memory management in a multi-layer virtual memory system. This approach 

reorganizes the currently used dynamic memory management and dynamic 

memory allocation mechanisms in order to solve or overcome the problem of 

memory leak. It also explores the concept of aging in the paged physical space as 

a method of detection of potential leaks in the virtual space. 

1.1.2 Dissertation Questions 

The major dissertation questions are:  

1. Why does the currently used dynamic memory management system permit 

the memory leak issue to exist?  

2. What are the available solutions to memory leak problem and what are their 

shortcomings? 

3. How can we use the concept of page aging in physical space as a means 

for detecting memory leaks? 

4. Why aging in physical space is preferred over aging in the virtual space? 

5. What is Multi-Layer Virtual Memory System? 

6. What are the guidelines that facilitate the implementation of the Multi-Layer 

Virtual Memory System? 

7. How does the Multi-Layer Virtual Memory System help in resolving memory 

leak problems?  
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1.1.3 Dissertation Scope 

 This dissertation will focus on solving the problem of memory leak. The 

Multi-Layer Virtual Memory System and aging will be investigated in the extent of 

its relation to the resolution of the memory leak problem. 

1.1.4 Dissertation Contributions 

Our dissertation adds the following contributions: 

1. Present and develop a new approach for memory leak detection using the 

concept of aging in the physical memory system to identify and solve 

memory leaks in the virtual memory system, thus allowing the algorithm to 

utilize the hardware available for virtual memory organization as shown in 

chapter 3. 

2. Present and develop a novel approach for dynamic memory management, 

a multi-layer virtual memory system as shown in chapter 4.  

3. Present a new approach for memory leak detection and recovery based on 

the Multi-Layer Virtual Memory System as shown in chapter 4. 

4. Provide guidelines that facilitate the implementation of both approaches: 

memory leak detection with aging and memory leak detection and recovery 

based on the new structure of the Multi-Layer Virtual Memory System. These 

guidelines are explained in chapters 3 and 4 respectively. 

 The memory leak detection and recovery based on the Multi-Layer Virtual 

Memory System approach that we present in this dissertation provides the 

following contributions: 
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a) Solves the problem of both of the unreachable and useless objects. 

b) Handles the problem of false positives. 

c) Provides run-time solution for memory leak detection and recovery whereas 

most of previous approaches either detect memory leak in development 

environment or remove only unreachable objects in run-time environment 

as performed by garbage collectors. 

d) Prevents programs from crashing by guaranteeing that the requested space 

on the virtual space is always available by moving potential leaky objects to 

disk that presumably has an unlimited space. 

e) Although there is a performance penalty cost, discussed in chapter 5, that 

will be paid by the algorithm, this penalty is kept to the minimum by: 

1) The performance penalty cost will never be paid (i.e deferred) until 

either the program exceeds a certain threshold in virtual address space or 

there is no available memory to be allocated and the application is about to 

crash. 

2) The algorithm consists of modular parts allowing optimal future 

implementations to these modules which reduce the overall performance 

penalty cost, as a result. 

3) The algorithm utilizes tunable parameters that are designed in order 

to reduce the cost. 

4) Performance evaluation of the algorithms and methods is presented 

in the dissertation.  
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5) Parallel programming and data partition is suggested in chapter 5 

and left to be explored as a future work. 

1.2 Dissertation Methodology 
Our dissertation passes through the following phases: 

 Identifying the shortcomings of the current solutions of memory leak 

problem and how it is related to the current dynamic memory 

management system. 

 Developing two descriptive algorithms. The first is for the new approach 

of memory leak detection using aging in physical memory space. The 

latter is a memory leak detection and recovery that utilizes the novel 

dynamic memory management, multi-layer virtual memory system to 

solve memory leak problems. 

 Evaluating the performance of both approaches using analysis and a 

trace-driven simulation program. The simulation program helps in 

algorithms' validation and verification and provides a proof of concept. 

 Analyzing the results and concluding. 

1.3 Organization of Dissertation 
This dissertation consists of six chapters that build on each other. Chapters 

three and four along with the analysis in chapter five are the core material being 

used to publish the following papers: 

a. Memory Leak Detection Using Aging in physical Memory Space  

b. A Novel Multi-Layer Virtual Memory System for Solving Memory Leak 

Problem.  
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The following is a detailed outline for each chapter:  

 Chapter I: Introduction. This chapter introduces the problem to be 

addressed, gives a justification and purpose of this work, and lists 

the basic structure of the dissertation. 

 Chapter II.  Dynamic Memory Allocation and Current Approaches for 

Solving Memory Leak Problem. This chapter overviews the dynamic 

memory allocation process, discusses and surveys the  existing 

mechanisms for detecting and solving memory leak problem and lists 

the shortcomings of these available solutions. Readers who are 

familiar with dynamic memory allocation and current approaches to 

solving memory leak and their shortcomings can skip this chapter. 

 Chapter III. A New Approach for Memory Leak Detection Using Aging 

in Physical Memory Space. In this chapter, we exploit the concept of 

aging in physical memory space to develop a new approach for 

memory leak detection  in virtual address space using aging in 

physical memory space.  

 Chapter IV. A Multi-Layer Virtual Memory System. In this chapter, we 

describe the Multi-Layer Virtual Memory System. We show how the 

Multi-Layer Virtual Memory System along with a new memory leak 

detection and recovery algorithm allow for efficient resolution of 

memory leak problem. We also provide some guidelines that 

facilitate the implementation of this new structure.  
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 Chapter V.  Performance Evaluation and Simulation. This chapter 

analyzes the performance of the presented algorithms in terms of 

access time and complexity. It shows, through analysis and a trace-

driven simulation program, how some of the performance measures 

can be enhanced. A separate simulation model is provided for each 

algorithm. Along with performance analysis, simulation programs 

validate the new approaches and provide a proof of concept. This 

chapter also compares both algorithms to current memory leak 

solutions and shows how the new approach outperforms the current 

approaches in providing a complete run-time solution.  

 Chapter VI. Conclusions and Future Works. This chapter provides 

basic conclusions as well as directions for future research. 

1.4 Conclusion 

This chapter introduces the problem which is summarized in presenting a 

novel approach for dynamic memory management that will reorganize the currently 

used dynamic memory management and dynamic memory allocation mechanisms 

in order to solve or overcome the problem of memory leak. It also gives 

justifications and purpose of this work, and lists the major dissertation questions, 

contributions and the basic structure of the dissertation  
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Chapter Two 
Dynamic Memory Allocation and Current Approaches for 

Solving Memory Leak Problem 
 

This chapter overviews the dynamic memory allocation process, discusses 

the existing mechanisms for detecting and solving memory leak problem and lists 

the shortcomings of the available memory leak solutions. 

2.0 Introduction 

Memory leak is particularly serious in long live applications. It slowly 

consumes available memory, causing performance degradation and eventually 

crashing the system. Memory leak is among the hardest bugs to detect since it has 

few symptoms other than slow and steady increase in memory consumption (Xie 

and Aiken, 2005). 

In the next sections, we review the dynamic memory allocation process. We 

show how the current dynamic memory allocation process allows the problem of 

memory leak to occur. Then, we review various approaches used for memory leak 

detection and recovery. After that, we list the shortcomings of these approaches 

and finally, we summarize the chapter. 

2.1.0 Dynamic Memory Allocation  

Dynamic memory allocation is the allocation of memory storage for use 

during the runtime of the program. A dynamically allocated object remains 

allocated until it is freed explicitly by a programmer or by a garbage collector  
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(Wikipedia, 2007). So, dynamic memory allocation is the allocation of 

memory for the use of a computer program during runtime. Figure 1 shows how 

memory is distributed among many pieces of data and code. 

Text 

Static 

Stack 

 

 

Heap 

FIGURE 1: THE PROCESS MAIN PARTS: DATA AND CODE 

Each program can be divided into text and data. The text is the actual program 

code and the data is the information that the text (code) operates on. Data can be 

further subdivided into static, stack, and heap. 

Where:  

Static: storage space is compiled into the program. Static variables are allocated 

during program loading and deallocated when program exits. For more information 

about pointers and memory, refer to "Pointer and Memory" by Parlante (Parlante, 

2000). 

/* global variables are static data */ 

int x[10]; /* x is stored in static area */ 

main () { 
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stack: local variables and parameters of function calls are managed by the system 

in the stack space during runtime. Stack variables are all allocated when entering 

the declaring block and deallocated when exitting. 

void dosomthing() { 

float y; /* y is stored in the stack * 

heap: dynamic allocations via new  or malloc are allocated also at runtime and 

stored in the heap space. Heap objects are allocated with malloc() or new() and 

deallocated with free() or delete(). 

main() 

char * str; /* the address of str is stored on the stack */ 

/* Allocate a string of 5 bytes on the heap. */ 

str = (char *) malloc(5); 

... 

/* de-allocate the heap memory*/ 

(void) free(string); 

A dynamically allocated object remains allocated until it is deallocated explicitly, 

either by the programmer or by a garbage collector. Both stack and heap 

management complicate memory management because these areas are dynamic. 

Of the two, stack management is much simpler than heap management because 

the stack space is allocated by function call frames in a regular Last In First Out 

(LIFO) pattern. Two factors make up heap management (Kline, 2007): 

1. how to manage the allocation of variable-sized chunks of contiguous memory  

2. how to manage the random order of allocations and deallocations   

http://en.wikipedia.org/wiki/Garbage_collection_%28computer_science%29
http://en.wikipedia.org/wiki/Garbage_collection_%28computer_science%29
http://en.wikipedia.org/wiki/Garbage_collection_%28computer_science%29
http://en.wikipedia.org/wiki/Garbage_collection_%28computer_science%29
http://en.wikipedia.org/wiki/Garbage_collection_%28computer_science%29
http://en.wikipedia.org/wiki/Garbage_collection_%28computer_science%29
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2.1.1 Dynamic Memory Allocation Strategies 

Several allocation strategies are used to find an available hole (free area) 

for a new allocation. Some of these strategies are cited in (Kline, 2007):  

1. First Fit: look for the first hole sufficiently large, starting from the beginning  

2. Next Fit: look for the first hole sufficiently large, but start from where you left 

off previously.  

3. Best Fit: look for a hole of smallest possible size   

4. Worst Fit: look for a hole of largest possible size 

The selection of a specific strategy has direct impact on performance as 

well as on external and internal fragmentation. Wilson and others (Wilson et al, 

1995) discuss these issues in their survey “Dynamic Storage Allocation: A Survey 

and Critical Review”.  

2.1.2.0 Dynamic Memory Allocation Algorithms 

The main problem for most algorithms is to avoid both internal and external 

fragmentation while keeping allocation and deallocation efficient. Various 

approaches are being used by memory allocation algorithms such as fixed-size-

blocks allocation, buddy blocks allocation, and heap-based memory allocation 

(WikiPedia, 2007): 

  

http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Fragmentation_%28computer%29
http://en.wikipedia.org/wiki/Algorithmic_efficiency
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2.1.2.1 Fixed-Size-Blocks Allocation 

This solution uses a LIFO linked list of fixed size blocks of memory. 

2.1.2.2 Buddy Blocks Allocation 

This solution uses a binary buddy block allocator. Memory is allocated from 

a large block of memory that is a power of two in size. If a block is more than twice 

as large as desired, it is broken in two. One is selected and the process is repeated 

recursively until the block is large enough. All the buddies of a particular size are 

kept in a sorted linked list or tree. When a block is freed, it is compared to its buddy. 

If they are both free, they are combined and placed in the next-largest size buddy-

block list. The allocator starts with the smallest sufficiently large block in order to 

avoid breaking blocks.  

2.1.2.3 Heap-based Memory Allocation 

Memory is allocated from a large pool of unused memory area called the 

heap. The size of memory allocation can be determined at runtime. Allocated 

regions are accessed via a reference. A free list is a linked list that connects 

unallocated regions of the heap together. A deallocated region is added to the free 

list, an allocated region is removed from the free list. 

2.1.3 Dynamic Memory Allocation Functions 

Gary Watson (Gary, 2007) provides a detailed list for memory allocation 

commands and how they can be used in C language.  The most frequently used 

commands are described below: 
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1. malloc fucntion: has the general form  

 

void *malloc ( unsigned int size )  

 

This function allocates a specified amount of memory in bytes. It will return 

a pointer to the beginning of the allocated space. 

2. calloc function: has the general form  

 

void *calloc ( unsigned int number, unsigned intsize )  

 

The calloc routine allocates a certain number of items, each of size bytes, and 

returns a pointer to the space.  

3. realloc function: has the general form 

void *realloc ( void *old_pnt, unsigned int new_size )  

The realloc function expands or shrinks the memory allocation in old_pnt to 

new_size number of bytes. Realloc copies as much of the information from old_pnt 

as it can into the new_pnt space it returns, up to new_size bytes. If there is a 

problem allocating this memory, a 0L value will be returned. If the old_pnt is 0L 

then realloc will do the equivalent of a malloc (new_size). If new_size is 0 and 

old_pnt is not 0L, then it will do the equivalent of free (old_pnt) and will return 0L. 

4. free fucntion: has the general form  

void free ( void *pnt )   
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The free routine releases allocation in pnt which was returned by malloc, 

calloc, or realloc back to the heap. This allows other parts of the program to re-use 

memory that is not needed anymore. It guarantees that the process does not grow 

too big and swallow a large portion of the system resources. 

2.1.4 The Access State of Referencing a Dynamically Allocated Object 

When a pointer is used to reference a dynamically allocated object, the 

access operation will result in one of the following states (success, illegal access, 

and corruption): 

1) success, if the pointer points to a reachable live object. 

2) illegal access, if the object has been deallocated and the pointer contains the 

address that is not allocated to some  other  object. 

3) corruption, if the object has been deallocated and the pointer contains the 

address that is allocated to some other object. The pointer will misguidedly access 

an object that is not supposed to access. 

2.1.5 Dynamic Memory Allocation and Memory Leak 

Memory leak is one of the major causes of software failures. Memory leak 

occurs because some imperative languages (e.g C, C++, Pascal, etc) place the 

responsibility of memory allocation and reclamation on the programmers. 

Programmers must use reclamation methods such as dispose, delete, or free 

system calls. 
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 This explicit store management leads to two common bugs: i) 

incompleteness (also called memory leaks) and ii) unsoundness (also called the 

dangling reference problem). Memory leak may lead to running out of virtual  

address space which results in computation failure (Abdullahi and 

Ringwood, 1998). On systems where all memory is in RAM, memory leak will result 

in an immediate failure (Wikipedia, 2007). Another consequence of memory leak 

is thrashing. Following Denning (Denning, 1968), a computation with page faults 

every few instructions is said to thrash. Memory leaks can cause extreme 

nonlocality of reference as live cells are dispersed over a large virtual address 

space. 

Explicit dynamic memory allocation in some languages like C and C++ 

leads to memory leak problem. Memory leak occurs when a program fails to 

deallocate the unwanted previously allocated memory chunks. In some garbage 

collected languages, memory leak occurs when a program keeps reference to a 

memory chunk that will never be accessed in the future. 
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2.2 Approaches for memory leak detection  
 In order to detect software bugs such as memory leak, many approaches 

have been proposed for dynamic code monitoring. The most commonly used 

approaches are assertions and static analysis, dynamic checkers, hardware-

assisted solutions, and garbage collectors. We review these approaches in the 

following sub-sections. 

2.2.1 Assertions and Static Analysis 

Assertions are inserted by programmers to perform required checks at 

certain places. The program aborts if assertions are violated (Zhou et al, 2005). 

Adding annotation (Evans, 1996) to the source code is used to make assumptions  

about memory management explicit at interface points. Examples of this 

approach include explicit model checking (Musuvathi et al. 2002; Stern and Dill 

1995) and program analysis (Choi 

et al. 2002; Engler and Ashcraft 2003; Hallem et al. 2002). Most static tools require 

significant involvement of the programmer to write specifications or annotate 

programs. Annotation is used by a static checker to make fixing memory 

management problems in a more systematic and goal-directed manner. An 

efficient use of the static checker should detect a broad class of errors that includes 

misuse of pointers,  
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use of dead storage, memory leaks, and dangerous aliasing. This approach does 

not eliminate the need for run-time testing nor does it detect all errors. 

Static analysis tools can find leaks before running the program by analyzing 

source code and thus do not cause any runtime overhead. An example of these 

tools is PREfix( Bush et al, 2000). This tool simulates the execution of individual 

functions. It derives the information directly from the source code rather than 

acquired through user annotations. Another static analysis tool, called Clouseau, 

is presented in (Heine and Lam, 2003). This tool implements a practical ownership 

model of memory management. In this model, every object is pointed to by one 

and only one owning pointer which has the exclusive right to delete the object or 

to pass the right of ownership to another pointer. Static analysis tools lack dynamic 

information which leads to conservative results including false positives and they 

do not find all leaks.  
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2.2.2 Dynamic checkers 

Dynamic checkers are automated tools that detect common bugs at run 

time, with instrumentation inserted in the code that monitors invariants and reports 

violations as errors. The analysis of this approach is based on actual execution 

paths and accurate values of variables and aliasing information. Some examples 

of these tools are DIDUCE (Hangal and Lam, 2002), Purify (Hastings and Joyce, 

1992), Valgrind (Nethercote and Seward 2003), StackGuard (Cowan et al, 1998), 

Insure++ (Parasoft Insure++, 2007), and Eraser (Savage et al, 1997). Some of 

these tools can detect memory leaks, memory corruption, buffer overflow, and data 

races. These tools often use compilers and code rewriting tools. While this 

approach is promising it suffers from: i) dynamic aliasing especially in C and C++, 

ii) high run-time overhead, iii) hard-coded bug detection functionality, iv) language 

specificity, and v) difficulty to work with low-level code(Zhou et al, 2005). 

One of the low-overhead memory leak detection tools is SWAT (Chilimbi 

and Hauswirth, 2004).  SWAT reports ‘stale’ heap objects that have not been 

accessed for a user definable, long time as leaks. SWAT has been used by several 

product groups at Microsoft and has proved effective at detecting leaks with a false 

positive rate less than 10%. According to Chilimbi and Hauswirth, SWAT has three 

advantages over Purify tool from Rational.  
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First, it uses unique strategy of identifying leaks based on object staleness. 

Second, since it uses sampling, the overhead is significantly lower than Purify (5% 

Vs 3-5X). Third, SWAT provides an indication of which program instruction last 

accessed by the leaked object. 

JRocket, JVM, is a real-time memory leak detection tool that utilizes a trend 

analysis of memory growth to detect memory leak. Each time there is a garbage 

collection in the JVM, JRocket sends trend data to the memory leak detector. The 

trend analysis shows the common object types in the heap and the rate at which 

memory of these objects are growing. The longer the trend analysis is, the more 

reliable the trend is. The JRocket can be used to detect memory leak, find out what 

is leaking, and then drill down to what is causing the leak in the code. One of the 

limitations of this tool is that it uses Java-based communication protocol which 

means that JRocket will create new objects to send information over to the 

management console. This may not be ideal, as the system probably low on 

memory because of memory leak. Another limitation is that when there are large 

amounts of information to send over, there is a risk of losing the connection to the 

management console because of timeout problem (Ostlund, 2005).  

JProbe from Quest Software (Quest Software, 2007) is another tool that 

tracks memory growth to detect memory leak in Java applications. It views memory 

usage for specific classes, methods and/or instances. It’s up to the users to 

determine the impact of memory leak or code change (JProbe, 2007). 
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The debug memory allocation or dmalloc library has been designed to 

provide powerful debugging facilities such as memory-leak tracking, fence-post 

write detection, file/line number reporting, and general logging of statistics. The 

dmalloc library replaces the heap library calls normally found in the system libraries 

with its own versions. When a call is made to malloc (for example), the dmalloc’s 

 version of the memory allocation function is called. The dmalloc library 

keeps track of a number of pieces of debugging information about pointer 

including: where it was allocated, exactly how much memory was requested, when 

the call was made, etc. This information can then be verified when the pointer is 

freed or reallocated and the details can be logged on any errors (Watson, 2004). 

2.2.3 Hardware-assisted solutions 

In this subsection, we review two approaches that use software/hardware 

solutions: hardware-assisted watch points and HeapMon. 

In hardware-assisted watch points, a simple hardware is used to support 

watching user selected memory locations. When a watched location is accessed, 

an exception is generated and handled by the interactive debugger. In general, 

dynamic monitoring is classified into two categories: Code-Controlled monitoring 

(CCM) and Location-Controlled Monitoring (LCM). 
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 In CCM, monitoring is performed at special points in programs as done by 

assertion and most of dynamic checkers. In LCM, monitoring is associated with 

memory locations as in hardware-assisted watch points and Intelligent Watcher 

(iWatcher). LCM has two advantages over CCM. First, LCM monitors all access to 

memory locations using all variable and pointer names, whereas CCM may miss 

some accesses due to aliasing problems. Latter, LCM monitors only those 

instructions that truly access the watched location, whereas CCM monitors many 

unnecessary points. The main advantage of CCM is that it does not need hardware 

support, while the LCM needs  

it. IWatcher is demonstrated, by simulation, to detect buffer overflow, 

memory leaks, accessing freed locations, stack smashing, and invariant violations 

(Zhou et al, 2005).  

HeapMon (Shetty et al, 2004) is another novel software/hardware approach 

to detecting memory bugs such as reads from initialized or unallocated memory 

locations. Memory leak is detected if, at the end of program execution, there are 

words in the heap region that are still in one of the allocated states. HeapMon relies 

on a helper thread that runs on a separate processor in a Chip Multi-Processor 

(CMP) system. The Thread associates a state bit with each word on the heap. The 

state bit indicates whether the word is unallocated, allocated but uninitialized, or 

allocated and initialized.  
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The state bits are updated when the word is allocated, initialized, or 

deallocated. Bugs are detected as illegal operations, such as writes to unallocated 

regions and reads from unallocated or uninitialized memory regions. These bugs 

are logged to enable developers to pinpoint the bug’s nature and location. The 

hardware support consists of an extra state bit for each cached word,  

communication queues between the application thread and the helper thread, and 

a small private cache for the helper thread. The main advantages of HeapMon are: 

i) no human intervention is needed, either to insert breakpoints or watch points 

ii)the bug detector is written in software, iii) no compiler is needed beyond relinking 

the application with a static library or running it with dynamically-linked library, and 

iv) the overhead is low. The storage overhead of this approach is 3.1% of the cache 

size and 6.2% of the allocated heap memory size. The execution overhead is 8% 

on average and 26% on the worst case.  

  



www.manaraa.com

26 

 

 

Figure 2 shows the general mechanism of HeapMon checking. Each heap 

memory request proceeds in three steps. First, the request from the main 

processor is forwarded to the main memory (step 1a) and to the HeapMon thread 

(step 1b). 

 

FIGURE 2: OVERALL MECHANISM OF THE HEAPMON( SHETTY ET AL, 2004) 

 Requests are events of interest: memory allocation, memory deallocation, 

and heap memory access. Extra information, such as process id, is piggybacked 

to the HeapMon to perform the necessary checks. On a read request, the memory 

replies with data (step 2a) and the tag processor reads the state for the request 

word (step 2b) and performs  a bug check whether the request type is allowed for 

the current state of the word. The result of the bug check is reported to the main 

processor (step 3a) and the state is updated if necessary (step 3b). 
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2.2.4 Garbage collectors and memory leak 

Garbage Collection has been an integral part of many programming 

languages such as Java, Lisp, Smalltalk, Eiffel, Haskell, ML, Scheme, and Modula-

3, and has been in use since the early 1960s. There are many indisputable benefits 

of garbage collectors including increased reliability, decoupling memory  

management from class interface design, and less development time. 

Dangling pointers and memory leaks do not occur in Java. However, garbage 

collection has some performance impacts, pauses, configuration complexity, and 

nondeterministic finalization (Goetz, 2003). Languages that use garbage collectors 

are not immune to memory leaks. Although the garbage collector can recover 

memory that has become unreachable and therefore logically useless, it cannot 

free memory that is still reachable and therefore potentially still useful 

(Wikipedia,2007). A leak detector that is based on a type accurate garbage 

collection finds more memory leaks than a leak detector based on conservative 

garbage collection.(Hirzel and Diwan, 2000) 
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Garbage collection is an inevitable consequence of programming 

languages that use dynamic data structures. With dynamic structures, the state of 

computation can be considered as many-rooted, directed graph called the 

computation graph (figure 3). The roots are the entry points to the graph. The 

internal vertices are realized as cells, contiguous segments of memory. A cell is a 

base address from which offsets can be accessed. In object-oriented languages, 

cells are objects. If cells are not of a fixed size they often have a terminator or an 

indicator of length in the cell’s header. The indicator is the number of bytes in the 

cell or a pointer to the last byte in the cell. Edges are realized by store address 

fields within cells. Cells referenced directly or indirectly from the root are called 

reachable, accessible, or live. As computation processes, addition and deletion of  
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roots, vertices, and edges modifies the graph. As a result, some portions of 

the graph become unreachable, inaccessible, or dead. These disconnected 

subgraphs make no contribution to the computation and known as garbage. In 

figure 3, the garbage cell is denoted by a filled circle and the accessible cell by 

unfilled circle. Without reuse, the finite store for allocating new vertices diminishes 

to zero. The garbage collector is a process by which the area occupied by garbage 

is reused (Abdullahi and Ringwood, 1998). 

 

FIGURE 3: A REPRESENTATIVE, THOUGH SMALL, STATE OF COMPUTATION (ABDULLAHI AND 

RINGWOOD, 1998) 

Dijkstra et al introduce two useful abstractions to the study of garbage 

collection. The mutator and the collector. The mutator abstracts the process that 

performs the computation and allocation. The collector abstracts the process that  
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reclaims garbage (Dijkstra et al, 1978). This abstraction, along with an 

excellent survey about garbage collection techniques in uniprocessor environment, 

is also mentioned in literature as a two-phase abstraction: garbage detection 

phase and garbage reclamation phase (Wilson, 1992). 

In his review, Abdullahi, lists the taxonomy of garbage collection (figure 4). 

The collector process is divided into two subprocesses: Identification, I, and 

Reclamation, R.  

 

FIGURE 4: GARBAGE COLLECTION TAXONOMY (ABDULLAHI AND RINGWOOD, 1998) 

Two classes of identification are identified: direct and indirect. Direct 

identification (also called reference counting) identifies cells that have no reference 

to them. Indirect identification identifies live cells by tracing them from the roots - 

what remains must be unallocated or garbage. Reclamation is classified 

depending on how free store is managed; If it can be managed as a free-list or a 

heap. If managed as a free-list contiguous garbage can be coalesced to form larger 

cells. If managed as a heap, a single reference, the top of the heap, indicates the 
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 division between allocated and unallocated store (Abdullahi and Ringwood, 

1998). More references about garabage collection and garbage collection 

techniques can be found on the "Garbage collection bibliography" (Jones, 2003). 

2.3 Shortcomings of current approaches  

Static analysis tools can find leaks before running the program which adds 

no running time overhead, but this limits them to be used in development 

environment where source code is available. This approach does not eliminate the 

need for run-time testing nor does it detect all errors. Static tools have no value 

when source code is not available. More over, static analysis tools lack dynamic 

information which leads to conservative results including false positives and they 

do not find all leaks. 

Dynamic checkers often use compilers and code rewriting tools. According 

to Zhou et al (Zhou et al, 2005) this approach suffers from: i) dynamic aliasing 

especially in C and C++, ii) high run-time overhead, iii) hard-coded bug detection 

functionality, iv) language specificity, and v) difficulty to work with low-level code. 

Despite the clear benefits of garbage collection such as increased reliability, 

decoupling memory management from class interface design, and less 

development time, garbage collectors work only with languages designed with 

garbage collection in mind. More over, languages that use garbage collectors are 

not immune to memory leaks. Garbage collector can recover memory that has 

become unreachable and therefore logically useless but, it cannot free memory 

that is still reachable and therefore potentially still useful.  
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2.4 Conclusion 

Memory leak occurs as a result of using dynamic memory allocation where 

some imperative languages (e.g C, C++, Pascal, etc) place the responsibility of 

memory allocation and reclamation on the programmers. In garbage collected 

languages, memory leak occurs when the programs keep a reference to an object 

that will never be used in the future. 

The most commonly used approaches for memory leak detection and 

recovery are assertions and static analysis, dynamic checkers, hardware-assisted 

solutions, and garbage collectors. These approaches suffer from several 

shortcomings. Static analysis tools lack dynamic information which leads to 

conservative results including false positives and they do not find all leaks. 

Dynamic checkers often use compilers and code rewriting tools. They suffer from: 

i) dynamic aliasing, ii) high run-time overhead, iii) hard-coded bug detection 

functionality, iv) language specificity, and v) difficulty to work with low-level code. 

Hardware-assisted solutions are costly to implement and are used to enable 

developers to pinpoint the bug’s nature and location with certain overhead cost. 

Garbage collectors are limited to languages designed with garbage collection in 

mind and can only remove unreachable objects in run-time environment. 

Most of the available solutions are not thorough, suffer from performance 

degradation, and do not provide a complete run-time solution. We alleviate some 

of these problems in the next chapter, a new approach for memory leak detection 

using aging in physical memory space. In chapter 4, we provide a complete run-

time solution by introducing another new approach for memory leak detection and 

recovery based on the introduced novel structure, the ML-VMS  
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Chapter Three 
A New Approach for Memory Leak Detection (MLD) 

Using Aging in Physical Memory Space 

3.0 Introduction 

Software aging refers to resource contention issues that can cause 

performance degradation or can cause systems to hang, panic, or crash. Software 

aging can include memory leaks, unreleased file locks, accumulation of 

unterminated threads, data corruption/round-off accrual, file space fragmentation, 

and others (Gross et al, 2002). 

Aging, in this dissertation, is related to the time a piece of memory object 

remains untouched.  A leaky object by definition will begin to age since it will no 

longer be accessed by any application program. Aging, in this context, can then 

be used to detect memory leakage. Memory leaks and aging refer to objects in the 

heap virtual space. Detecting the age and the leaky status of an object in the virtual 

space is time consuming. In this dissertation, we exploit the status of a memory 

object in reference to the physical memory space in order to detect the age of an 

object and hence the leak in virtual address space. A new approach for memory 

leak detection is presented based on the aging of an object in the physical space. 

This approach for memory leak detection provides the following contributions:  

1. Memory leak in the virtual space is detected based on aging in the physical 

space, thus allowing the algorithm to utilize the hardware available for virtual 

memory organization.   
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2. MLD provides a conservative run-time solution for memory leak. This is 

similar to conservative garbage collectors in the sense that it deals with 

unreachable objects but it detects memory leak based on physical memory 

aging. 

3. The performance penalty cost (PPC) that will be paid by the algorithm is 

kept to minimum using the following techiques: 

a. The PPC will never be paid (i.e deferred) until the program exceeds a 

certain threshold in virtual address space, i.e., the heap size grows 

beyond a certain limit. 

b. The algorithm consists of modular parts allowing optimal future 

implementations to these modules which reduce the overall PPC, as a 

result. 

c. Parallel threads may be utilized as a tool for further performance 

enhancement (See Chapter 5) 

In the next sub-sections, we present our approach for memory leak 

detection. In this chapter, we present various performance metrics such as 

program crash delay, false positives, false negatives, and telemetry. The chapter 

will end with some conclusions.  
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3.1 Memory Leak Detection (MLD) Using Aging in Physical Memory 

Once a chunk of memory is leaked, it will no longer be accessed by the 

application program. Hence, a leaky memory will begin to age. Aging, in this 

context, is related to the time a piece of memory remains untouched. Memory  

aging can then be used to detect leakage. In classic computer systems, 

memory allocation is done both at virtual and physical levels. A memory leakage 

in the virtual space will render the corresponding mapped physical memory in a 

“page-out status”. A page-out status makes a page in the physical memory a target 

for the replacement policy. Going backward, a paged out page can correspond, 

but not necessarily, to a leaked chunk in the virtual space.  The age of a physical 

page is the time elapsed since the page is swapped out of the physical to the virtual 

space. More precisely, the age begins to accumulate from the time a page is 

marked by the replacement policy as a target for replacement. Note that a page 

may remain in the physical space for a long time after it has been marked as a 

replaceable page.  
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The aging in the virtual address space for an application is correspondent 

to a similar aging in the physical address space. Memory aging is measured as a 

time elapsed since i) the last dereference to the memory chunk in the heap by one 

of its pointers, ii) a page was marked for replacement in the physical space, or iii) 

a page was last swapped to virtual space. Thus, the memory detection mechanism 

can rely on either the virtual space or physical space. A memory chunk will be 

considered a candidate leak if the age of its corresponding memory page exceeds 

a certain limit (threshold). This threshold can be either user defined or tuned by a 

telemetry tool. 

The memory leak detection (MLD) algorithm can rely on memory aging 

either in the virtual or physical space. Aging in the virtual space is more accurate  
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than aging in the physical space. The physical space is much smaller than 

the virtual address space, and pages can age more quickly, and become 

candidates for replacement. Also, aging in the physical space depends on the 

replacement policy used by the OS. Different replacement policies (LRU, FIFO, 

OPT, LFU(Silberschatz et al,2005)) select different pages for replacement at any 

given time. Furthermore, pages in physical memory may become candidates for 

replacement because of the behavior of other processes, given that global 

replacement policies are used.  

On the other hand, aging in the virtual space is process dependent. A chunk 

of memory continues to age as long as no reference is made to this chunk. The 

main problem of tracing the age of memory pieces in the virtual space is the 

overhead associated with keeping track of the age and scanning for older chunks 

in memory. This is particularly true when the list of allocated memory is relatively 

large. Using the physical memory allocation for leak detection has the advantage 

of hardware support in most virtual memory systems, and thus the detection time 

overhead can be negligible.  

Another problem with using physical memory is that a page in physical 

memory may correspond to several chunks in the virtual space. Several chunks, 

whose size is smaller than a page, are mapped into one physical page. Hence, if 

only one chunk in the virtual space is active, while the other chunks have leaked, 

then the corresponding physical page remains active and the leaks in that page 

will not be detected. Using a smaller page size can relax this problem, 
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 but does not resolve it. Further optimization can be applied to relax this 

problem. However, the necessity of applying optimizations will be dictated by the 

experimental measurement of how serious this problem is. 

In order to have a more accurate detection algorithm, we propose a new 

algorithm that reflects both the physical and virtual behavior of memory allocation. 

We will benefit from the hardware support available for tracking physical pages in 

real memory. We list the MLD algorithm pseudo code next. After that, we explain 

it block by block. 
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3.2 MLD Algorithm Pseudo Code 

Figure 5 shows the pseudo code for MLD algorithm 

For every process that wants to exploit MLD algorithm //this process becomes a monitored process 
Begin 

Initialize() 
              Perform the following functions concurrently 

     Bookkeeping() 
     Run the Sweeper() if it is started 

  
End 
Initialize () { 
 Set Heap_Size_Threshold to input value 

Set Sweeper_Sleep_Time to input value 
Set Page_Age_Threshold  to initial input value 

} 
Bookkeeping(){ 

Reset time stamp field for any new entry added to page table. 
For every victim page selected from the mapped physical space 

Time stamp the corresponding page in the virtual address space by setting the time 
-stamp  field in the page table to the current time. 

For every paged-in page 
  Reset the Time stamp field. 
} 
Sweeper(){ 
             //use conservative approach for garbage collection 
             while(true){ 
 For each page in the page table of the monitored process{ 
              If isLeakyPage(page_number, current_time, Page_Age_Threshold (τ)){ 
    Mark all reachable chunks from (static, stack, and registers) as live objects 
   //use conservative approach//consider all a like pointers as pointers 
                                           Garbage Collect unreachable chunks(dead) 
                                           Remove Garbage Collected chunks entries from mallocTable 
 
              } 
 } 
            sleep(Sweeper_Sleep_Time) 
            } 
} 
bool isleakyPage (page_number, current_time, Page_Age_Threshold (τ)) { 
   if (time stamp of page_number>0){ 

      Age = current time – time stamp of page 
      If Age > Page_Age_Threshold(τ) then return true 

   } 
   Return false 
} 
//Sweeper() process is started by the memory allocation function 
//MallocTable , a table that tracks allocations and deallocations, is maintained by memory allocation 
function 

FIGURE 5: THE PSEUDO CODE FOR MLD ALGORITHM 
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3.3 MLD Algorithm Explanation 

In this sub section, we explain the MLD algorithm and provide guidelines 

that facilitate its implementation.  

Figure 6 represents the block diagram of MLD algorithm. The diagram 

shows the major components required to implement the algorithm. Next, we 

describe these components and explain how the algorithm works. 
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     TS 

     CurrentTime 

       

     0 

      

RAM       Page Table 

(a) bookkeeping 

 
void *malloc( size_t size ){ 
 void * returnPtr;// pointer to newly allocated object 

 The original code of malloc is left unchanged 
 
  If  (Current_Heap_Max_Size > Heap_Size_Threshold){ 
                  Start the sweeper ()// if it is not already started 
               } 

MallocTable.add(retrunPtr, size,0); //0 assume unreachable(dead) 
return returnPtr 
} 

(c ) memory allocation 
 
Malloc Table 

Begin 
Address 

Size Mark Flag 

   

   

   

   
 
void free(void *s){ 
//original code the same  
mallocTable.remove(*s) 
} 

(d ) memory deallocation 

FIGURE 6: FLOW DIAGRAM FOR MLD ALGORITHM 

  

(b)Sweeper() 
Iterate through page table 

to find aging pages (every 

sweeper-sleep time) 

For every aging page: 
- Set reachable objects flag 

- GC unreachable objects 

- Remove GCed objects from Table 

Page out 

Page in 

http://www.phim.unibe.ch/comp_doc/c_manual/C/SYNTAX/void.html
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3.3.1 MLD Main Function 

For every process that wants to exploit MLD algorithm //this process becomes 
monitored process 
Begin 

Initialize() 
              Perform the following functions concurrently 

     Bookkeeping() 
     Run the Sweeper() if it is started 

  
End 

FIGURE 7: MLD ALGORITHM - MAIN FUNCTION 

 

The “main function” of the algorithm, figure 7, keeps iterating over monitored 

processes. The monitored processes are the processes chosen by the operating 

system or the system administrator to exploit MLD. A telemetry tool will be very 

helpful in controlling and monitoring such processes. Choosing a subset of all 

processes to be monitored reduces the performance cost of MLD to minimum. As 

a rule of thumb, there are some types of processes that can benefit from MLD such 

as: long live processes and critical applications that can not tolerate crashes. In 

theory, MLD can be used to solve memory leak in any process. However, there is 

no meaning to pay the cost of MLD in a short term application, an uncritical 

application, or applications that are proven not to have memory leak related 

problems. 

The “main function” of MLD algorithm initiates the initialization function 

which we will explain next. After initialization, the “main function” starts the 

bookkeeping() function and the sweeper() function and continues these functions 

for ever. Note that the sweeper must have been started aleady before it can be 

used by the “main function”.  
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3.3.2 Initialization 

Initialize () { 
 Set Heap_Size_Threshold to input value 

Set Sweeper_Sleep_Time to input value 
Set Page_Age_Threshold  to initial input value 

} 
FIGURE 8: MLD ALGORITHM-INITIALIZE()  FUNCTION 

The initialize() function, figure 8, initializes some important parameters that 

affect the behavior of the MLD algorithm.  These parameters are: 

Heap_Size_Threshold: The sweeper function will start sweeping once the 

size of the heap exceeds this threshold value. For example, Heap_Size_Threshold 

can be set to 80% or 90% of the maximum possible heap size. This parameter is 

useful to keep the cost of memory lead detection and recovery as low as possible. 

Note that memory leak is not a problem in its own. It becomes a threat to the 

running application only when a malloc function fails to allocate memory due to 

memory unavailability. Hence, we propose to run the sweeping part of the 

algorithm, which is responsible, for recovering leaky objects, only when the heap 

size has approached its maximum limit. 

Sweeper_Sleep_Time: the time in milliseconds a sweeper will wait 

between any two successive scans. The smaller the value of Sweeper_Sleep_time 

the more overhead the sweeper will generate on operating system and vice versa. 

Page_Age_Threshold: the age value above which a page will be 

considered to have a potential leak. Page_Age_Threshold is a tunable parameter. 

One simple way to dynamically calculate the average age of the 

Page_Age_Threshold:   
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Where n is the number of pages available in the virtual address space. A 

telemetry tool will be very handy in initializing and tuning such parameters. 

3.3.3 Bookkeeping 

Bookkeeping(){ 
Reset time stamp field (TS) for any new entry added to page table. 
For every victim page selected from the mapped physical space 

Time stamp the corresponding page in the virtual address space 
by setting the time - stamp field in the page table to the current 
time. 

For every paged-in page 
  Reset the Time stamp field. 
} 

FIGURE 9: MLD ALGORITHM-BOOKKEEPING()  FUNCTION 

The major task of bookkeeping() function shown in figure 9 and figure 6(a) 

is to timestamp a page whenever it is selected as a victim by the page out 

replacement algorithm. This time will be used to calculate the time a page remains 

out of physical memory, i.e., the age of a page.  

The page table is the data structure that stores the mapping between the 

virtual addresses and the physical addresses. In a computer architecture where 

the word size is 32 bits, we are able to address 232 different virtual locations. If the 

page size is 1 KB, then the page table has 222 entries.  

To facilitate the implementation of the aging algorithm for leak detection and 

the bookkeeping() functionality, we augment the page table in the virtual memory 

system with a new attribute that we call Time Stamp (TS) as shown in table 1. TS 

Attribute is marked with “*” to indicate that it is a new entry in the page  
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table. The TS field is initialized to zero each time a new page entry is added 

to a page table. When a page is swapped back into the physical space, TS is set 

to zero also. 

Presence 

Bit(PB) 

Frame 

no.(FN) 

Secondary 

Storage 

Address (SSA) 

Dirty 

Bit 

(Dbit) 

* Time 

Stamp 

(TS) 

     

     

Table 1: Augmented Page Table 
Where: 

Presence bit (sometimes called valid-invalid bit)(PB): PB indicates whether 

the physical page is in main memory or must be fetched from secondary 

storage (a page fault). When this bit is set to “valid”, it indicates that the 

associated page is both legal (in the process’s logical address space) and 

in memory. If the bit is set to “invalid”, it indicates that the page is either not 

valid (not in the process’s address space), or is valid but is currently on disk. 

Illegal addresses are trapped by using the valid-invalid bit. 

Frame number(FN): FN indicates the physical base address of a frame. 

Secondary storage address (SSA):  SSA is used to locate the data on 

disk. 

  



www.manaraa.com

46 

 

Dirty (modify) bit (Dbit): Dbit is set whenever any word or byte in the page 

is written into. When a page is selected for replacement, the dirty bit is 

examined. If it is set, it must be written back to disk. If it is not set, then the 

page has not been modified and it can be overwritten without writing it to 

disk. 

Time Stamp* (TS): Time stamp attribute added to page table to facilitate 

bookkeeping functionality of the MLD. 

The best place to implement the bookkeeping functionality is in the page 

replacement policy. Pages become candidate for replacement in the physical 

memory according to the replacement policy used(LRU, FIFO, LFU,OPT 

(Silberschatz et al,2005)).  Irrespective of the replacement policy used, once a 

page is selected as a victim page, the TS of the corresponding page in the virtual 

address space is set to the current time. For any paged-in page the TS field is 

reset. The TS of zero value means the page is new and no longer considered an 

aged page. 

3.3.4 Memory Allocation and Deallocation Functions 

In order to implement the MLD algorithm, we suggest changes to memory 

allocation and deallocation functions such as malloc(), new() , free(), dispose() and 

delete() functions. We show the changes to malloc() and free() in the next two sub 

sections. Changes to other allocation/deallocation functions are the same, and 

hence we do not provide a description for all funcitons. The interface to the malloc() 

and free() functions is left intact. This means we do not need to 
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 make significant changes to available user applications. Changes will be 

only implemented in memory allocation and deallocation functions. Next, we 

present these changes in malloc() and free() as an example. 

3.3.4.1 Malloc () 

Figure 10 shows malloc() after being modified to accommodate the MLD 

algorithm. The original code of malloc() is left as is. However, the malloc() function 

execution incorporates two major changes just before it returns a pointer to the 

newly allocated  memory chunk. The first change is made to defer paying the 

performance penalty cost, The heap size is checked by malloc(). If it has reached 

a predetermined threshold value, then the Sweeper() is started.. Once the 

threshold limit is reached this means the application is about to reach the maximum 

size of the heap and the application state becomes critical. Applications with heaps 

that do not reach the Heap_Size_Threshold will never pay the cost of sweeping 

and therefore the cost incurred is kept to minimum. 

void *malloc( size_t size ){ 
 void * returnPtr;// pointer to newly allocated object 
 The original code of malloc is left unchanged 
// This piece of code is intended to monitor the execution of the Sweeper(). 
  If  (Current_Heap_Max_Size > Heap_Size_Threshold){ 
                  Start The sweeper()// if it is not already started 
               } 
//This piece of code is intended to maintain a table structure for 
//allocations/deallocations 
MallocTable.add(retrunPtr, size,0); //0 assume unreachable(dead) 
return returnPtr 
} 

FIGURE 10: MLD ALGORITHM – MALLOC() FUNCTION 
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The second change made to the malloc() function execution is intended to 

maintain a new table data structure. We call this table MallocTable and it is shown 

in Table 2. 

 Begin 

Address 

Size Mark Flag 

   

   

Table 2:  MallocTable, Memory allocation table 
 For any memory chunk created by malloc(), a corresponding entry will 

show up in the MallocTable. This entry will contain the starting address of the 

chunk in the heap, the chunk size, and a mark flag. Reachable objects are 

identified by scanning the static stack, and registers. The mark flag is set by the 

sweeper if a chunk is reachable and remains zero if it is not. All entries with mark 

flag reset are unreachable objects and have to be garbage collected. 

3.3.4.2 free () 

The free() function is shown in figure 11 and figure 6(b). The original code 

of free() function remains the same. A single change is made to the free() function 

execution. Just before the free() function exits, it removes the freed object from the 

MallocTable.   

void free(void *s){ 
//original code the same  
mallocTable.remove(*s) 
} 

FIGURE 11: MLD ALGORITHM- FREE() FUNCTION 

  

http://www.phim.unibe.ch/comp_doc/c_manual/C/SYNTAX/void.html
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3.3.5 Memory Leak Detection and Sweeping 

The main strength of the detection algorithm is that it utilizes the information 

provided by the virtual memory manager to identify the age of a memory chunk in 

the virtual memory using physical memory allocation information.  

There is a certain category of memory allocations, which can be considered 

by the compiler and/or the user as non-leaky no matter how long they remain in 

memory, i.e., independent of age. Typical examples are dictionaries, trap and 

exception handling objects, and other libraries. Such objects can be locked 

permanently until the program exits. All other leaks are treated according to the 

MLD algorithm. Next, we explain memory leak detection and sweeping. 

3.3.5.1 Memory Leak Detection  

bool isleakyPage (page_number, current_time, Page_Age_Threshold (τ)) { 
   if (time stamp of page_number>0){ 
      Age = current time – time stamp of page 
      If Age > Page_Age_Threshold(τ) then return true 
   } 
   Return false } 
} 

FIGURE 12: MLD ALGORITHM- ISLEAKYPAGE() - LEAK DETECTION  FUNCTION 

According to the leak detection function, isLeakyPage(), shown in figure 12, 

a page is considered leaky if its page age is greater than the Page_Age_Threshold,  

where the page age is equal to the value of current time minus page time stamp. 

The time stamp is entered into the corresponding page table entry (TS) when a 

page is selected for replacement by the page replacement policy. A leaky page, in 

this context, may or may not contain a real 
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 leaky object; thus it is considered as a candidate for leak. Since a leaky 

page has not been used in memory for a relatively long time, it is likely that it has 

some unreachable objects (real leak), but this is not necessary. If the time stamp 

is zero this means that the page is active and available in physical memory. 

3.3.5.2 Memory Leak Sweeping 

Sweeper(){ 
             //use conservative approach for garbage collection 
             while(true){ 
 For each page in the page table for the monitored process{ 
              If isLeakyPage(page_number, current_time, 
Page_Age_Threshold (τ)){ 
    Mark all reachable chunks from (static, stack, and 
registers) as live objects 
   //use conservative approach//consider all a like pointers 
as pointers 
                                           GC unreachable chunks(dead) 
                                           Remove GCed chunks entries from mallocTable 
 
              } 
 } 
            sleep(Sweeper_Sleep_Time) 
 

FIGURE 13: MLD ALGORITHM- SWEEPER() – LEAK SWEEPING  FUNCTION 

The Sweeper(), figures 13 and 6(b), is a process started by the malloc() function 

when the heap size grows to a point close to its maximum size.  The main function 

of the Sweeper() is to remove unreachable objects from aged pages, given that 

the aged page is found to include a leak. The Sweeper() starts sweeping for the 

application that exceeds the Heap_Size_Threshold. The Sweeper() iterates 

through the page table to find out potential leaky pages of the target application 

every Sweeper_Sleep_Time. The pages identified by the Sweepr() at this level are 

the ones with potential leaks. In order to determine 
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 which page actually contains a real leak, the Sweeper() performs another function. 

For each page in the set of potential leaky pages, the sweeper starts scanning 

from the roots (static, stack , and registers) to find out if this page has unreachable 

objects. Unreachable chunks in every identified leaky page are deleted (garbage 

collected). Note that the scanner does not have to scan across all the heap objects 

which may be very large. This has always been the main disadvantage of classic 

garbage collection tools. In our approach, the Sweeper() first identifies the potential 

leak locations, and then performs the scanning against these locations only. This 

way, the cost of finding the leaky objects is drastically reduced. 

3.4 Crash Delay 

By removing unreachable objects from the heap, the sweeper() will save 

additional new room in the heap for future allocations. This additional room will 

make the target application live longer and delay possible crash due to lack of 

memory. However, for several reasons, the Sweeper() may not prevent program 

crashing due to  lack of memory. Among these reasons are: 1) setting 

Heap_Size_Threshold to a relatively large value which delays the startup of the 

Sweeper(), 2) setting the Sweeper_Sleep_Time to a large value that makes the 

sweeper() not able to cope with the speed of the allocation operations being made 

by target application. Allocation operations are process dependent, and 3) Setting 

the Page_Age_Threshold to a relatively large value which makes it more difficult 

for the Sweeper() to identify enough leaky pages. In fact, the Sweeper() 
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 will fail to identify any single leaky page if the Page_Age_Threshold is 

extremely large. In case the Sweeper() fails to ensure that the required space is 

available on the heap to satisfy allocation requests, the target application will crash. 

Crash prevention is one of the major advantages of MLD algorithm if the 

sweeper() is able to remove unreachable objects and make enough room for new 

allocations. In the worst case, the MLD algorithm delays the crash if it is imminent 

and makes application live longer. The ML-VMS (Chapter 4) along with a memory 

leak detection and recovery algorithm will be able to completely prevent crashing 

as the requested size for allocation will always be available. 

3.5 False Positives 

One of the main problems in memory leak detection tools is the potential 

error known as “false positives”. In other words, a detected leak is not a real leak. 

The object identified as a potential leak gets dereferenced after the system has 

given up on it! Referencing an object after it has been removed from memory, i.e., 

deallocated, causes incorrect results or the program to crash altogether. False 

positives can not be tolerated in critical mission applications. Hence, we have to 

be careful when dealing with false positives.  

MLD algorithm is a conservative algorithm. It produces zero false positives. 

The MLD starts scanning from the roots (static, stack, and registers) searching for 

reachable objects. Once reachable objects are identified, the remaining are 

hundred percent unreachable and can not be false positive. 
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 Without the scanning part of the algorithm, the MLD produces false 

positives. However, the rate of false positives can be controlled using the 

Page_Age_Threshold. Increasing this threshold value will reduce the rate of false 

positives. For some noncritical applications, where the program crash and restart 

does not cause a serious penalty to the users, the MLD can very well be used 

without the scanning part.  

3.6 False Negatives 

False negatives are leaky chunks that go undetected.  Note that a page 

allocated to physical memory may consist of one or more memory objects in the 

heap virtual space. If at least one of these objects remains active, then the 

corresponding page will never age beyond the age threshold. As a result, the other 

objects allocated to the same page will go undetected if they become leaky. This 

phenomenon will result in false negatives, i.e., undetected leaky objects. 

MLD algorithm does not totally remove false negatives, but it can minimize 

the number of false negatives by decreasing the Page_Age_Threshold. 

Decreasing Page_Age_Threshold will make MLD identify more leaky objects. 

However, this operation will increase the cost of the sweeper() that will sweep a 

relatively large number of potential leaky pages. So there is a trade off. After all, 

several numbers of false negatives can be tolerated since the MLD will help the 

application to keep going. 

Another way is to choose a smaller page size. In this case, the number of 

independent objects allocated to the same page will be reduced. However, there 
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 are some disadvantages for choosing smaller page sizes. One way of 

getting around this problem is to use the concept of dynamic page size setting, 

where pages will have different sizes, and each page size is determined based on 

the memory objects sizes. Smaller objects will be allocated to smaller page sizes, 

while larger objects will be allocated to larger page sizes. This concept will be the 

subject of future research. 

3.7 Memory Leaks and Telemetry 

The main concept behind memory leak detection is the aging of objects. 

The telemetry subsystem may be used to monitor the aging of objects. The age 

monitor reports the objects whose age exceeds a certain threshold value. This 

process allows the user more control over memory leaks. The report includes the 

memory object, the owner, the age, and recommendation on how to deal with the 

object.   

Some benefits that can be gained by a telemetry tool: 

 Ability to select which processes will exploit the MLD algorithm and 

which will not. 

 Initialize and tune MLD parameters such as: Heap_Size_Threshold, 

Sweeper_Sleep_Time, and Page_Age_Threshold for each 

monitored proecess.  

 Create and monitor a sweeper for each monitored process. 

 Monitor heap limits, false positives, false negatives, and other 

performance measures 
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 Allow the user to discover potential leaky objects and make 

appropriate corrections in the source code. 

3.8 Conclusion   

This chapter provides a full description of a new approach for memory leak 

detection (MLD) algorithm using aging in physical memory. This algorithm reflects 

both the physical and virtual behavior of memory allocation and benefits from the 

hardware support available for tracking physical pages in real memory. 

 The MLD is shown to follow a conservative approach in removing 

unreachable objects. The MLD is not able to deal with stale objects at run time 

because there is no way to tell if these objects will be referenced in the future by a 

running program. The current structure of virtual memory system and dynamic 

allocation prevents the availability of such a complete run-time solution. 

Applications that exploit this algorithm are able to live longer than the applications 

without it. The false negatives and overhead depend on some input parameters 

like Page_Age_Threshold and system parameters like Page_Size which suggest 

a need for a telemetry tool. In the next chapter, we provide a complete run-time 

solution. In chapter 5, we show the effect of tuning the input parameters on 

performance and we provide performance evaluation results 
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Chapter Four 
Multi-Layer Virtual Memory System (ML-VMS)  

4.0 Introduction 

In the previous chapter, we showed that the current structure of virtual 

memory system and dynamic allocation prevents the availability of a complete run-

time solution for memory leak problem. 

In this chapter, we propose to reorganize the virtual memory system into a 

Multi-Layer Virtual Memory System (ML-VMS). The ML-VMS is a novel structure 

that reorganizes the virtual memory system and dynamic memory management. A 

new algorithm for memory leak detection and recovery (MLDR) is presented based 

on this new structure. The MLDR still uses the physical memory aging as done by 

the MLD, however, it will utilize the proposed new ML-VMS. We show how the ML-

VMS along with the MLDR allow for efficient resolution of memory leak problem. 

The idea of the ML-VMS emerged out of the original MLD algorithm. Initially, 

the MLD algorithm, based on aging, was supposed to deallocate all objects in a 

page whose age exceeds the given threshold. However, to account for false 

positives, it was suggested that objects can be kept on the hard disk, while 

removed from the heap, in case they get dereferenced (false positives). The main 

challenge was to be able to recover the false positives from the hard disk. Several 

approaches were discussed and addressed, including the use of hardware traps, 

the modifications of addresses of freed objects, and others 
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. However, careful investigation of this challenge reveals that the main issue 

is to establish a mapping between the heap storage and the global disk storage 

where potential leaky obects can be stored.  

Moreover, the real problem of leaks is that the heap storage has a physical limit 

imposed by the size of the address words (32 bits in 32-bit machines and 64 bits 

in 64-bit machines). Memory leaks may exhaust the heap size, although the 

application may not in reality need that much space. As such, the ability to move 

objects from the heap and store them in the much larger disk space (unlimited 

space) and recover them when needed will allow a greedy MLD algorithm to 

dispose of potential leaks without the fear of a crash whenever these objects are 

derferenced. Also, an application program which requires very large memory 

space (larger than the 32-bit address space) will be able to run without facing “out 

of memory” failure mode. Of course, with 64-bit machines this problem may not be 

as serious. However, our experience with application development is that users 

will tend to exhaust computer resources as soon as they become available. In this 

chaper, we will present the ML-VMS approach which provides a solution to this 

challenge. 

While the MLD is not able to deal with stale objects the MLDR provides a 

complete run-time solution for memory leak problem.  A simulation model will be 

used, in chapter 5, to validate both of the ML-VMS and MLDR and provide a proof 

of concept. We also provide some guidelines that facilitate the  
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implementation of this new structure (ML_VMS) and MLDR. 

This ML-VMS along with MLDR algorithm provides the following 

contributions: 

1. Deals with both unreachable and useless (stale) objects. 

2. Handles the problem of false positives. If a false positive object is deleted 

from the heap and referenced later by the application the deleted object is 

recovered. 

3. Provides run-time solution for memory leak detection and recovery whereas 

most of previous approaches either detect memory leak in development 

environment or remove only unreachable objects in run-time environment 

as performed by garbage collectors. 

4. Prevents programs from crashing by guaranteeing that space on the virtual 

memory is always available by moving potential leaky objects to disk that 

presumably has an unlimited space. 

5. Although there is a performance penalty cost (PPC) that will be paid by the 

algorithm, this penalty is kept to minimum by using the following techniques: 

a. The PPC will never be paid (i.e deferred) until either the program 

exceeds a certain threshold in virtual address space or there is no 

available memory to be allocated and the application is about to crash.  
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b. The algorithm consists of modular parts allowing optimal future 

implementations to these modules which reduce the overall PPC, as a 

result. 

c. Aging in the virtual space is detected based on aging in the physical 

space, thus allowing the algorithm to utilize the hardware available for 

virtual memory organization.  

d. The algorithm utilizes tunable parameters that reduce the cost to the 

minimum. 

e. Parallel programming is suggested, as shown in chapter 5, to provide 

more enhancements in performance. 

We describe the structure of the new ML-VMS and show how the ML-VMS 

allows for efficient resolution of memory leak problem through the memory leak 

detection and recovery (MLDR) algorithm.  

4.1 Multi-Layer Virtual Memory System (ML-VMS) 

The ML-VMS is constructed by adding an additional layer to the virtual 

memory system. This layer introduces a new data structure that we call a virtual 

heap table (VHT). The VHT is shown in Table 3. The VHT contains an entry for 

each allocated memory chunk. The memory chunk can be located on the heap and 

then VHT contains its virtual address or it can be located on disk and the VHT 

contains its disk address. 
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Virtual Heap 

Table Index 

(VHTI) 

Presence Bit 

(PB) 

Virtual 

Address (VA) 

Size Disk Address 

(DA) 

0     

1     

Table 3: Virtual Heap Table(VHT) 
Where: 

Virtual Heap Table Index (VHTI):  is an index to the virtual heap table. This entry 

does not have to be stored in the table. Each entry in the table is identified by this 

index. 

Presence Bit (PB): PB tells whether the object is on the virtual address space or 

on the disk. If the PB is set, it indicates the object is allocated in the given virtual 

address space entry. Otherwise; the object was deallocated from the virtual 

address space by the MLDR algorithm and it (the object) is currently available on 

disk in the given disk address entry. The default value of PB is one. i.e the object 

is available on the virtual address space. 

Virtual Address (VA): is an entry for the base virtual address of an object. This 

entry has meaning only when the PB is set. 

Size: is an entry that contains the size of the memory chunk (object). 

Disk address (DA): contains the address at which the object was backed up 

before being deallocated by the MLDR algorithm. This entry has meaning only 

when the PB is zero.  
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4.2 Address Resolution 

 Address resolution is the process of address translation from a virtual 

address to a physical address. In the ML-VMS organization, there are two levels 

of address translation. One level is required to find the virtual address of an object. 

The second level is to find the physical address in the physical memory. Address 

resolution in the new ML-VMS is illustrated in figure 14. The figure shows how a 

VHT reference (VHTR) is translated into a physical address. 
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FIGURE 14: ADDRESS RESOLUTION IN ML-VMS  -  MAPPING VHTR INTO PHYSICAL ADDRESSES 
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According to the ML-VMS, programs now use virtual heap table references 

(VHTR) instead of virtual addresses. Address resolution is started with a valid 

VHTR. This reference is an index to the VHT that we call virtual heap table index 

(VHTI).  If the PB of the VHTI is set, address resolution proceeds normally with the 

VA that is associated with the VHTI. Otherwise; the object is on disk at a given DA 

and it has to be recovered (4.3.4) and the address resolution must be restarted. 

Next, we list the memory leak detection and recovery algorithm (MLDR) based on 

this ML-VMS. 

4.3 The MLDR Algorithm Based on the ML-VMS 

The MLDR algorithm contains the following modules: memory allocation, 

memory deallocation, ML-VMS with aging, and object recovery. We define and 

present these modules respectively.  

4.3.1 Memory Allocation 

 Memory allocation proceeds as follows: 

a. Find a free memory chunk and return its virtual address (VA). 

b. Place the VA in a new entry in the VHT. 

c. Set the PB  

d. Return the corresponding virtual heap table index (VHTI) as a virtual heap 

table reference (VHTR) to the calling program. 
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e.  

4.3.2 Memory Deallocation 

Memory deallocation proceeds as follows: 

a. If the PB in the VHT is reset then the VHTR belongs to an object that is 

freed earlier. Exit memory Deallocation. 

b. Else translate the given VHTR of a memory chunk into a VA 

c. Proceed normally to deallocate the given VA in the usual deallocatin 

process. 

d. Reset the PB 

4.3.3 ML-VMS and Aging 

The ML-VMS facilitates the implementation of the aging algorithm and hides 

the memory leak problem. 

If the aging algorithm decides that a given page is aging and must be freed, it 

performs the following steps: 

a) Use the number of the aging page as a search key to look up all of page’s 

corresponding aging memory chunks   in the VHT. 

b) For each aging chunk  CHi 

1) Backup CHi to disk if it is reachable (useless or stale) 

2) Set the disk address (DA) of CHi in the VHT and reset the 

corresponding PB if it is reachable and remove the VHT entry if it is not 

reachable. 
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3)  

4) Deallocate CHi from the Heap whether it is reachable or not. 

4.3.4 Object Recovery 

a. Find a free memory chunk and return its virtual address (VA) 

b. Copy the object from disk to the new located object 

c. set the PB 

d. set the virtual address entry in the VHT to the  new VA 

e. Remove the recovered chunk from disk. 

4.4 MLDR algorithm block diagram based on ML-VMS 

The MLDR algorithm block diagram is shown in figure 15. 
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     CurrentTime 

       

     0 
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void *malloc( size_t size ){ 
 void * returnPtr;// pointer to newly allocated object 
 long int VHTI;//unique identifier 

 The original code of malloc is left unchanged 
 
  If  (Current_Heap_Max_Size > Heap_Size_Threshold){ 
                  Start The sweeper() //if it is not already started 
               } 
VHTI=getIndex() 

HeapTable.add(VHTI,1,retrunPtr, size,0);  
 
returnVHTI 
} 

(c ) memory allocation 
 
Heap Table 

Virtual 

Heap Table 

Index 

(VHTI) 

Presence 

Bit (PB) 

Virtual 

Address 

(VA) 

Size Disk 

Address 

(DA) 

0     

1     
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FIGURE 15 : THE BLOCK DIAGRAM OF MLDR ALGORITHM  

4.5 MLDR Explanation 

In this section, we explain the main modules of the algorithm along with 

enough necessary examples. The aging concept is used in both of the MLD 

(chapter 3) and the MLDR (chapter 4). Readers should refer to chapter 3 on details 

about aging in physical memory space if necessary. The following modules, that 

are explained next, are related to the MLDR. 

4.5.1 Memory Allocation Module Explanation 

Memory allocation module proceeds as shown in figure 16. 

a) Find a free memory chunk and return its virtual address (VA). 

b) Place the VA in a new entry in the VHT. 

c) Set the PB  

d) Return the corresponding virtual heap table index (VHTI) as a virtual heap 

table reference (VHTR) to the calling program. 

 

FIGURE 16: MEMORY ALLOCATION FOR MLDR 

The memory allocation process starts by finding a free chunk in the heap 

and returning its virtual address (VA). This VA is placed as a new entry in the VHT. 

The PB is set to indicate that this chunk is available in the virtual address space. 

The VHTI is returned to the calling program. For example, after an application 

executes the statement: 

x = malloc(50);  
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the VHT will have a new entry as follows: 

 

(VHTI) 

Presence Bit 

(PB) 

Virtual Address (VA) Size Disk Address 

(DA) 

0 1 0x8012a67 50 0 

 

We assume this allocation was the first allocation in the program. PB is set. 

VA=0x8012a67 which is the address of the chunk in the heap. The value of x in 

the program now contains the VHTI=0 not 0x8012a67 as usually done by current 

virtual memory systems. 

 Figure 17 shows the suggested changes made to the malloc() function in 

order to implement the memory allocation module of the MLDR. 

void *malloc( size_t size ){ 

 void * returnPtr;// pointer to newly allocated object 

 long int VHTI;//unique identifier 

 The original code of malloc is left unchanged 

  If  (Current_Heap_Max_Size > Heap_Size_Threshold){ 

                  Start The sweeper() //if it is not already started 

               } 

VHTI=getIndex() 

HeapTable.add(VHTI,1,retrunPtr, size,0);  

returnVHTI 

} 

FIGURE 17: MALLOC() FUNCTION FOR THE MLDR 
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Most of the original code for malloc() including the malloc() interface is left  

intact so there will be no need to make any changes in the user programs. 

There are two issues to mention. The first is that, as we discussed in the MLD, the 

malloc() starts the sweeper() when the heap size exceeds a certain threshold. The 

latter is that the malloc() adds the VA to the heap table and returns the VHTI of 

that entry. Each added item will have the PB set by default, the VA, the size and 

null value for the DA. 

4.5.2 Memory Deallocation Module Explanation 

Memory deallocation proceeds as follows: 

a) If the PB in the VHT is reset then the VHTR belongs to an object that is 

freed earlier. Exit memory Deallocation. 

b) Else translate the given VHTR of a memory chunk into a VA 

c) Proceed normally to deallocate the given VA in the usual deallocatin 

process. 

d) Reset the PB 

FIGURE 18: MEMORY DEALLOCATION OF MLDR 

Memory deallocation module, figure 18, starts by passing a VHTR. If the PB 

of that reference is reset then this is an attempt to free an already freed chunk. In 

this case, the deallocation module exits. Otherwise, the VHTR is translated into a 

VA. Then, this VA is freed from the heap. And the PB is reset. For example, after 

an application executes the statement: 
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free(x); //and x has the value of VHTR= 0. 

the VHT will be as follows: 

 

(VHTI) 

Presence Bit 

(PB) 

Virtual Address (VA) Size Disk Address 

(DA) 

0 0 0x8012a67 50 0 

The free() function translates the VHTR of x =0 to the VA=0x8012a67. This 

VA is deallocated from the heap and the PB is reset to indicate that the VA in this 

entry no longer exists. Any other future attempt to free this object again by calling 

free(); say free(y) where y was set to x. The module will find that the PB is reset 

and exits. This result is important and shows how the ML-VMS solves the problem 

of aliasing and dangling pointers. This is outside the scope of our Dissertation but 

is mentioned for future research. 
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4.5.3 MLDR with Aging Module Explanation 

If the aging algorithm decides that a given page is aging and must be freed, 

it performs the following steps: 

a) Use the number of the aging page as a search key to look up all of page’s 

corresponding aging memory chunks   in the VHT. 

b) For each aging chunk  CHi 

1) Backup CHi to disk if it is reachable (useless or stale) 

2) Set the disk address (DA) of CHi in the VHT and reset the 

corresponding PB if it is reachable and remove the VHT entry if it is not 

reachable. 

3) Deallocate CHi from the Heap whether it is reachable or not. 

 
FIGURE 19: MLDR WITH AGING 
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The aging in physical memory space is used to detect aging in virtual 

address space. This concept was discussed thoroughly in chapter 3. Here, we 

explain how it is related to the MLDR and the ML-VMS, figure 19, using the 

following four-step example. 

Step one: 
We start the example by presenting a block of code, figure 20, shown next. 

In this example, xPtr, yPtr, and zPtr point to chunks of sizes 40, 60, and 20 

respectively. Assume that all of these pointers are created and mapped to page 1 

on the page table.  

char* xPtr, *yPtr, *zPtr; 

xPtr = (char *) malloc(40);/* allocate memory */ 

yPtr = (char *) malloc(60); /* allocate memory */ 

zPtr = (char *) malloc(20); /* allocate memory */ 

FIGURE 20: A BLOCK OF CODE FOR THE MLDR EXAMPLE 

Step two: 
After  allocating xPtr, yPtr, and zPtr according to memory allocation module of the 

MLDR, we get the following snapshot of the VHT: 

(VHTI) Presence Bit 

(PB) 

Virtual Address (VA) Size Disk Address 

(DA) 

… .... ….. … …. 

120 1 0x8012c00 40 0 

121 1 0x8013d00 60 0 

122 1 0x8018e11 20 0 

… … … … …. 

Later on, suppose at time T6 we take a horizontal slice of the page table that 

we show next.  
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 Presence 

Bit(PB) 

Frame 

no.(FN) 

Dirty 

Bit 

(DB) 

* Time 

Stamp 

(TS) 

 

Page 0 

.... … … …. 

 

Page 1 

1 12 0 T1 

Table 4: A horizontal snapshot slice of the augmented page table at time (t6) 
 

The bookkeeping() function of the aging algorithm has already time-stamped 

page 1 with T1. T1 represents the last time page 1 was used in the physical 

memory. 

Step three: 

The aging algorithm will decide that page 1 is aging because its age=T6-T1 

is greater than a threshold value. The aging algorithm proceeds in looking up all of 

the pages's corresponding chunks in the VHT. These chunks in the aging page are 

those pointed by VHTI= 120, 121 and 122. 

Step four: 

Now, we perform the steps 1 through 3 of the aging model on each element: 

120, 121, and 122. Assume that entry 120 is still reachable by the application 

program and entries 121,122 are not. Then after executing the aging module we 

will have the following snap shot of the VHT.  
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(VHTI) Presence Bit 

(PB) 

Virtual Address (VA) Size Disk Address 

(DA) 

… .... ….. … …. 

120 0 0x8012c00 40 0xdab678ca 

… … … … …. 

 

All entries were deallocated from the heap whether they are reachable or 

not. The chunk with VHTI=120 is backed-up to disk. It’s PB is reset to indicate that 

the chunk is no longer available on the virtual address space and it is on the disk 

at the disk address indicated by the DA entry=0xdab678ca. 

4.5.4 Object Recovery Module Explanation 

Object recovery module, shown in figure 21, is executed once an application 

makes a reference to an object that was already deallocated and backed up to 

disk. This is called a reference to a false positive object. A false positive object was 

identified earlier as a potential leak and moved to disk. It turns out, later on, that 

this object is being accessed by the program. The MLDR object recovery module 

a long with the ML-VMS is capable of recovering such an object. 
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a. Find a free memory chunk and return its virtual address (VA) 

b. Copy the object from disk to the new located object 

c. set the PB 

d. set the virtual address entry in the VHT to the  new VA 

e. Remove the recovered chunk from disk. 

FIGURE 21: OBJECT RECOVERY FOR MLDR 

We explain how the object recovery module works using an example. We 

take a snapshot of the VHT before and after executing the object recovery module. 

Assume the snapshot of the VHT before executing the recovery module as follows: 

 

 

(VHTI) 

Presence Bit 

(PB) 

Virtual Address (VA) Size Disk Address 

(DA) 

… .... ….. … …. 

120 0 0x8012b00 40 0xdab678ca 

… … … … …. 
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If the program has to access entry 120 it finds out that the PB is reset. This 

means the chunk is available on disk. The module allocates a new room for chunk 

stored in DA=0xdab678ca in the heap and return it’s VA, say 0x8003c01. The PB 

is set to indicate the chunk is now available in the virtual address space and can 

be accessed normally and the VA is changed in the VHT to point to the new 

returned VA. The recovered chunk with DA=0xdab678ca is removed from the disk 

to save space. The new snapshot of the VHT after performing the object recovery 

looks as follows: 

(VHTI) Presence Bit 

(PB) 

Virtual Address (VA) Size Disk Address 

(DA) 

… .... ….. … …. 

120 1 0x8003c01 40 0xdab678ca 

… … … … …. 

4.6 Crash Preventing 

We have seen that the MLD can delay a possible application crash for an 

application dependent period of time. In case the crash is imminent, the MLD will 
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 not prevent it. One big enhancement of the MLDR over the MLD is that the 

MLDR can prevent the target application from crashing if the input parameters are 

well-tuned. Among these parameters are Heap_Size_Threshold, 

Page_Age_Threshold, and Sweeper_Sleep_Time. The MLDR removes both of the 

unreachable objects and stale or useless objects, in an aging page, in order to 

make enough room for new allocations. The requested size for allocation is 

guaranteed to be always available assuming a large disk is used.  

Crash preventing performed by the sweeper(), however, is not always 

guaranteed for several reasons. These are the same reasons that apply to the 

crash delay for the MLD. Among these reason are: 1) setting 

Heap_Size_Threshold to a relatively large value which delays the startup of the 

Sweeper(), 2) setting the Sweeper_Sleep_Time to a large value that makes the 

sweeper() not able to cope with the speed of the allocation operations being made 

by the target application. We have to keep in mind that allocation operations are 

process dependent, and 3) Setting the Page_Age_Threshold to a relatively large 

value which makes it more difficult for the Sweeper() to identify enough leaky 

pages. In fact, the Sweeper() fails to identify any single leaky page if the 

Page_Age_Threshold is extremely large. In case the Sweeper() fails to ensure that 

the required space is available on the heap to satisfy allocation requests, the target 

application will crash. 
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Actually, we can make use of ML-VMS such that the program will never 

crash. Here is how. Assume that the sweeper has slept for a very long time. Many  

leaks are there and have not been discovered. The heap size reached its 

limit. In this case, the malloc() should be able to free objects in the heap based on 

FIFO or LRU or Random; and allocate new chunks. This is one of the powerful 

features of the ML-VMS. We will not address this issue further, and will defer it to 

future research and investigation. 

If our system can tolerate performance overhead cost paid by the 

sweeper(), the general rule of thumb is to minimize all of the mentioned input 

parameters. Minmizing Heap_Size_Threshold makes the sweeper() start early and 

provide enough space before it is too late. Minimizing Page_Age_Theshold makes 

the MLDR identify more aging pages and provide more enough room. Minimizing 

Sweeper_Sleep_Time makes the MLDR run the sweeper more frequently and, as 

a result, identify more aging pages. 

4.7 False Positives 

 “False positives” problem is one of the potential errors in memory leak 

detection tools. False positive means the detected leak is not a real leak. If the 

system has given up on a false positive object and got dereferenced later on then 

the program crashes altogether. False positives can not be tolerated in critical 

mission applications.  
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We have seen that the MLD produces zero false positives because it 

implements a conservative approach that considers every value similar to a pointer 

as a pointer. The new structure of the ML-VMS allows the MLDR to remove all 

aging chunks if they are reachable or unreachable. The problem of false positives 

 occurs when a reachable chunk that has not been used for a relatively long 

period of time is aged. In that case, the MLDR will remove these aged chunks and 

falls in the false positive problem in case any of them get dereferenced. The MLDR 

provides a solution to false positives problem based on the ML-VMS by using the 

object recovery module of the algorithm. 

4.8 False Negatives 

A false negative is another potential error in memory leak detection tools. It 

means the failure to detect real memory leak. In case, there is at least one active 

chunk in the virtual space page, while the other chunks have leaked, then the 

corresponding physical page remains active and the leaks in that page will not be 

detected.  
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As in the MLD algorithm, the MLDR does not totally remove false negatives. 

The MLDR is also similar to the MLD in terms that it can minimize the number of 

false negatives by decreasing the Page_Age_Threshold. Decreasing the 

Page_Age_Threshold makes the MLDR identify more leaky objects. However, this 

operation increases the cost paid by the sweeper() that sweeps, as a result, a 

relatively large number of potential leaky pages. So, there is a trade off. The cost 

of sweeping in the case of the MLDR is much higher than the cost of sweeping in 

the MLD because the MLDR sweeping process requires an additional work. The 

MLDR backs up the removed chunks to the disk in case they might be used again. 

Writing to a disk is a costly operation in the virtual memory system. Several 

numbers of false negatives can be tolerated since the MLD will help to keep the 

application running. 

4.9 Memory Leaks and Telemetry 

Some parameters affect the performance of the MLDR such as 

Heap_Size_Threshold, Page_Age_Theshold, and Sweeper_Sleep_Time. We 

suggest implementing a telemetry tool that tunes these parameters in order to 

generate the minimum false positive rate given the maximum tolerable overhead. 

Some other benefits that can be gained by a telemetry tool are the same benefits 

discussed earlier in chapter 3. 
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 A telemetry tool is outside the scope of this dissertation and is left for future 

work. 

4.10 Conclusion 

This chapter presents a new approach for virtual memory system. It 

reorganizes the virtual memory system into a Multi-Layer Virtual Memroy System 

(ML-VMS). The ML-VMS adds a new layer to the current virtual memory system 

and dynamic memory management.  

A new algorithm for memory leak detection and recovery (MLDR) is 

presented based on this new structure. The MLDR still uses the physical memory 

aging as done by the MLD (chapter 3) but it builds upon the proposed new ML-

VMS. We show how the ML-VMS along with the MLDR allows for a complete run-

time resolution of memory leak problem.  

The MLDR resolves the problem of both of the reachable and unreachable 

objects. It handles the problem of false positives. If a false positive object is deleted 

from the heap and referenced later by the application the deleted object is 

recovered. It provides a run-time solution for memory leak detection and recovery  
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whereas most of previous approaches either detect memory leak in 

development environments or remove only unreachable objects in run-time 

environment. It prevents programs from crashing. The MLDR guarantees that 

space on the virtual memory is always available by moving potential leaky objects 

to disk that presumably has an unlimited space. 
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Chapter Five 
Performance Evaluation and Simulation 

This chapter analyzes the performance of the MLD and the MLDR based 

on the ML-VMS in terms of access time and complexity. It shows, through analysis 

and a trace-driven simulation program, how some of the performance measures 

can be enhanced. We compare both of the MLD and the MLDR to current memory 

leak solutions and show how the new approach outperforms the current 

approaches in providing a complete run-time solution. 

We start the performance analysis in section (5.1). Then, we discuss the 

simulation model of the the MLD and its simulation results in section (5.2). After 

that, we discuss the simulation results of the the MLDR (5.3) and finally, we 

compare both of the MLD and MLDR to some available solutions (5.4). 

5.1 Performance Analysis 

In the next sub sections, we analyze the performance of the MLD, the ML-

VMS and the MLDR in terms of access time and complexity and show how this 

cost can be minimized. 

  



www.manaraa.com

84 

 

 

5.1.1 The MLD Complexity 

The MLD algorithm (3.1.1) incurs the cost of initialization, bookkeeping and 

sweeping these cost are given according to equation (1). 

MLD cost = Initialization cost + bookkeeping cost + sweeping cost     …. (1) 

Initialization cost: 
This cost is paid once when the application that exploits MLD starts up. It includes 

initializing three input parameters so this cost is of the O(3). 

Bookkeeping cost: 
This cost is paid for every paged-out or paged-in page. By setting or resetting the 

time stamp of the corresponding page in the page table. Suppose, on the worst 

case, the application swaps in/out n pages then the overall cost is of the O(n). 

Sweeping cost: 
The sweeper is the bottle neck for the MLD algorithm. It performs the following 

operations: 

1. Iterates over n pages to determine if they are leaky. This operation has the 

complexity O(n). In practice, the number of pages are process dependent 

and has an upper constant value which makes this operation have the cost 

O(number of pages). Where number of pages = process size/page size. 

2. For each leaky page the set of unreachable objects have to be found by 

scanning from static, stack, and registers. Therefore, this operation has the 

complexity of O(n) assuming linear search is used. 
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3.  

4. The sweeper itself has to be re-executed in every sweeper_sleep_time. 

This operation has a complexity of O(n). 

Since all of these operations are nested then the overall complexity of the sweeper 

is O(n2).  Sweeping cost dominates the MLD other costs, initialization and 

bookkeeping. Therefore the overall complexity of the MLD is O (n2).   

Complexity minimization: 
The cost of the MLD is kept to minimum by: 

1. This cost will never be paid until the heap size threshold limit is reached. 
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2. The sweeper will be in a sleeping state before being re-executed for a 

sweeper-sleep-time period.  

3. The sweeper can be parallelized as shown in the next section 

5.1.2 The MLD Parallelized 

In computer environments where parallelism can be used, the MLD 

performance can be enhanced. We suggest using data partition in order to achieve 

an enhancement in performance. Figure 22 shows how the MLD can use data 

partition to parallelize the problem of sweeping.  

Page 0 .

p0 P...

isLeaky()Nosleep

restart

Scan unreachable

Garbage Collect

Page n

pn

isLeaky() No sleep

restart

Scan unreachable

Garbage Collect

 

Figure 22: MLD Parallelized 
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Let  

Page[]={page 0, page 1,…,page n} represent the set of page indexes in a 

page table for a given application where n>=0 

process[]={p0, p1, .., pn} represent the set of parallel processes. Where 

n>=0 

Then for every pagei in page[] assign the process pi from process[]. 

 If the page is aging and therefore might contain a potential leak the process 

continues; otherwise it sleeps a sweeper-sleep-time period and restarted. 

The activity of scanning unreachable objects and garbage collection also 

can be further parallelized for extra performance enhancement. Using 

parallelism to enhance performance of the MLD is suggested to be 

investigated in a future work. 
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5.1.3 Demand Paging Access Time 

Demand paging access time is governed by memory access time and the 

page-fault time. 

Let p be the probability of a page fault (0<= p <=1). 

 ma be memory access time 

 pgTime page fault time 

 dpTime demand paging access time 

Then 

Demand paging access time (dpTime) is calculated according to the following 

formula 

dpTime = (1-p) * ma + p x pgTime     (2) 

in order to minimize the dpTime, the pgTime should be as low as possible since 

ma is usually given in nanoseconds whereas pgTime is in milliseconds.  Since this 

parameter is physically set by the hardware, the only remaining parameter that is 

SW and architecture dependent is the probability of page faults. Thus minimizing 

(p) is the target of system architecture and optimization. 
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5.1.4 ML-VMS Access Time 

The ML-VMS has significant effect on the performance of the computer 

system. The ML-VMS adds additional layer on the demand paging system. In 

addition to the cost paid by the demand paging memory system, the ML-VMS may 

incur the cost of accessing a disk either to backup a chunk or to recover another 

chunk in case of false positives.  

The ML-VMS incurs additional time over that of demand paging in case an 

application is referencing a chunk that has already moved to disk. i.e false positive.  

Let pFP be the probability of a false positive access (0<= pFP <=1). 

 fpTime false positive time 

 dpTime demand paging access time 

Then the ML-VMS access time is given according to the following equation: 

ML-VMS access time = (1-pFP) * dpTime + pFP * fpTime      (3) 

Where fpTime is the service time incurred to perform the following operations 

1. Service the false positive interrupt. 

2. Recover the chunk from disk including making a new room for the recovered 

chunk and updating the VHT. 

3. Restart the process. 

Since most of the above operations are disk operations, we expect the service 

time, fpTime, to be costly. We minimize this cost by: 
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a.  reducing the probability of false positives (pFP) to the minimum. We show 

in the next two section how increasing the page age threshold value reduces 

the false positive rate and, as a result, reduces the performance cost.  

b. storing the backed up objects on the swap space instead of the regular disk. 

Swap space is usually faster than that of the file system. 

By substituting equation 2 for dpTime in equation 3 the ML-VMS time is given 

according to equation 4. 

ML-VMS access time = (1-pFP) ((1-p) * ma + p x pgTime) 

+ pFP * fpTime        (4) 

5.1.5 ML-VMS Overhead Cost 

The overhead of the ML-VMS can be derived from equation 2 and 4 

according to the following equation: 

OH= ML-VMS access time/ dpTime     (5) 

The ML-VMS will be OH times more expensive than that of the demand paging 

access time. Since false positive rate is the dominant factor of the ML-VMS then 

from equation 5 the ML-VMS overhead can be minimized by just minimizing the 

false positive rate as we show in the simulation results of the MLDR. 
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5.2 Trace-Driven Simulation of Memory Leak Detection Algorithm  

In order to validate, verify, and provide a proof of concept to the MLD 

algorithm, we built and ran a trace-driven simulation program. Figure 23 shows an 

abstract block diagram for the top-level of the simulation program. 
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Figure 23: trace-driven Simulation program -  abstract block diagram 

The trace-driven simulation program consists of two stages. These stages  
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are shown in figure 23 separated with a horizontal line. The first stage is 

data trace collection and leak injection and the latter is the trace-driven simulation 

for the memory leak detection algorithm. We illustrate these stages next. 

5.2.1 Data Trace Collection and Leak Injection (Stage One) 

In this section, we describe the benchmark used, the data collection 

technique, and the process of leak injection. 

5.2.1.1 MLD Bench Mark 

In order to collect data traces and use it as an input to test our trace-driven 

simulation program, we built our own benchmark. The benchmark generates 

random allocations and deallocations and records it to a trace file. A survey of 

trace-driven memory simulation can be found in (Uhlig and Mudge, 1997; 

Toomula,2004) and the accurecy of trace-driven simulations in (Goldschmidt and 

Hennessy,1993). We could use the trace provided by a synthetic model (Zorn and 

Grunwald, 1994) or a trace generated by program execution (Bhansali et al, 2006). 

Our benchmark provides the following advantages: 

1. It is designed to run similar to real-world programs. The runtime period of 

this benchmark is controlled by a tunable parameter (MAX_TRANS); 

MAX_TRANS is described in the next section ( data collection.) 

2. It has a known behavior and its generated statistics matches 100% to the 

statistics collected by universally well-known tools like memory trace 

(mtrace) and debug memory allocation library (dmalloc). 
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3. It has no internal memory leak. It generates a balanced allocation and 

deallocation transactions. Before it terminates, it deallocates all 

undeallocated objects. Thus, the only memory leak in the trace files is our 

previously known injected leak. This allows a more deterministic analysis of 

the memory leak detection algorithm. 

 Our benchmark consists of two files mldbench.h and mldbench.c. The source 

code for these files is provided in appendix B. 

5.2.1.2 Data Collection 

In order to generate and validate trace files, we perform the following steps: 

1. Tune parameters in mldbench.h file. The mldbench.h contains several 

parameters that control the output nature of the trace files. Not all real-world 

applications allocate and deallocate memory in the same manner. Some 

applications allocate small-sized objects, while others allocate medium or 

large-sized objects. Some applications hold allocated objects for a long 

time; others hold objects for a short time and so on. Tuning the benchmark 

makes its output similar to a target application. We list the parameters used 

in mldbench.h file: 

  



www.manaraa.com

94 

 

a) MAX_TRANS: the maximum number of allocations and deallocations to 

create. The larger the value the lengthier the trace file will be. 

b) SEED: the seed value to the random function. 

c) P_MALLOC: the probability that malloc() will be called. 

d) P_FREE: the probability that free() will be called. P_MALLOC and 

P_FREE sum to one. Setting up P_MALLOC to a value higher than 

P_FREE makes the benchmark allocate more often than it deallocates, 

i.e., creates a leaky environment.  

e) P_MIN_SIZE: probability of allocating objects of small size. Small sized 

objects belong to the closed interval [MIN_SMALL_CHUNCK_SIZE, 

MAX_SMALL_CHUNCK_SIZE] 

f) P_MEDIUM_SIZE: probability of allocating medium sized objects. 

Medium sized objects belong to the closed interval 

[MIN_MEDIUM_CHUNCK_SIZE, MAX_MEDIUM_CHUNCK_SIZE] 

g) P_LARGE_SIZE: probability of allocating large sized objects. Large 

sized objects belong to the closed 

interval[MIN_LARGE_CHUNCK_SIZE, MAX_LARGE_CHUNCK_SIZE] 
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h)  

Table X shows the initial setup we have used for these initial parameters 

Parameter Name Value 

MAX_TRANS 10000, 100000 

SEED 12755765 

P_MALLOC 0.50 

P-FREE 0.50 

P_MIN_SIZE 0.85 

P_MEDIUM_SIZE 0.15 

P_LARGE_SIZE 0.05 

MIN_SMALL_CHUNCK_SIZE 1 byte 

MAX_SMALL_CHUNCK_SIZE 256 byte 

MIN_MEDIUM_CHUNCK_SIZE 257 byte 

MAX_MEDIUM_CHUNCK_SIZE 4 Kbyte 

MIN_LARGE_CHUNCK_SIZE 4 Kbyte +1 byte 

MAX_LARGE_CHUNCK_SIZE 10 Kbyte 

Table 5: Benchmark used parameters 
The user is encouraged to tune up the mldbench.h to the parameters that 

he/she thinks are more close to the target application being simulated. 

2. Compile and run. We compiled and ran the benchmark using gcc compiler 

under Suse Linux 9.0. For each different value of MAX_TRANS parameter 

we get a different trace file.    
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3. Create a balanced trace. The benchmark is supposed to generate a 

balanced trace file for every single run. A balanced trace file contains a 

deallocation transaction for every allocation transaction. A balanced trace 

file has no memory leak. Before the benchmark terminates, it deallocates 

all the remaining undeallocated objects. Later on, we show how we 

introduce a known leak in the trace files (leak injection) and show how much 

of that leak is detected by our MLD algorithm.  

4. Validate with mtrace and dmalloc. We validate the benchmark and trace 

files using two well-known debugging tools: memory trace tool (mtrace) and 

debug memory allocation library (dmalloc). Both tools reported that the 

benchmark generates no memory leak in any created trace file. Trace files 

can vary in size from small to large depending on the input parameters.  

For clarity purposes, we provide figure 24 to show a snapshot of one of these 

trace files: 

MAX TRANS: 100000 
Trans     ra size 
+ 0x804a008 5338 
+ 0x804b4e8 118 
+ 0x804b568 7010 
+ 0x804d0d0 200 
- 0x804b568 7010 
+ 0x804b568 222 
- 0x804a008 5338 
- 0x804b4e8 118 
+ 0x804a008 67 
- 0x804a008 67 
- 0x804d0d0 200 
+ 0x804a008 243 
+ 0x804b650 8564 
- 0x804b568 222 

FIGURE 24: A SNAPSHOT OF ONE OF THE TRACE FILES 
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The plus (+) sign means allocation and the minus (-) sign means 

deallocation.  The remaining values represent the return address, in hexadecimal 

format, and the size of each allocated or deallocated chunk in bytes. 

We show how these traces are used in the trace driven simulation model. 

5.2.1.3 Leak Injection 

The benchmark, as already discussed, generates a balanced trace files. A 

balanced trace file contains a deallocation transaction for every allocated object. 

So, the trace file has no memory leak. Before the benchmark terminates, it 

deallocates all the remaining undeallocated objects. 

In order to inject leak in the trace files, we simply mark the deallocation 

transactions that represent the free() function, in the trace files,  as if they were 

deleted or commented. These transactions are marked and not deleted. This mark 

is used by the simulation program to know the exact point where a live object 

becomes unreachable. Unreachable objects will age because they are no longer 

accessed by the application and they will be detected by the MLD aging algorithm. 

For example, table 6 shows the accumulated number and size of the leak that we 

inject in two trace files generated by the benchmark. We will find out how much of 

the injected leak is recovered by the MLD algorithm. 
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Trace File for 

benchmark 

Injected leak in the trace 

file 

No of 

objects 

Size (byte) 

 (a) (b) 

Trace0 4976 3401804 

Trace1 49855 34197871 

Table 6: An example of accumulated amount of injected leak in two trace files 

5.2.2 Trace-Driven Simulation (Stage Two) 

The trace-driven simulation program, stage two, starts by reading a trace 

file and the simulation input parameters (Input parameters are listed in appendix 

A; table A.1). The program runs until the trace file has no more transactions. At the 

end of simulation execution, the program writes output parameters to one or more 

output files. Output parameters are listed in appendix A; table A.2. 

In each single run on a trace file, the simulation program determines the 

next event the target process (Pi) is going to go through. The process will enter 

one of the following events:   Memory allocation event, free event, or memory 

access event. Although, in reality, a process might be in some other events, these 

are the only events of most interest in order to monitor virtual address space. A 

process might be allocating memory and, as a result, increasing the heap size and 

consuming virtual address space. A process might be freeing memory and, 

therefore, saving virtual address space. Or, a process might be accessing memory.  
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If a memory reference is made to a page that is available in memory, then 

the reference is completed and no further action is required.  Otherwise; its 

corresponding page is paged-in and its time stamp (TS) is reset according to the 

bookkeeping part of the MLD algorithm. If there is no space in RAM for the 

requested page, a victim page is selected for replacement and the current time is 

written into its corresponding page table entry (TS).    

To simulate memory allocation and deallocation events, we have used our 

own versions of malloc() and free() functions and implemented the changes that 

we proposed in section 3.1. For memory access event, we developed a function  
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that simulates demand paging. Bookkeeping part of the algorithm was 

implemented in the page replacement policy. The page replacement policy used, 

in this simulation, is implemented using least recently used (LRU) strategy. The 

source code of MLD simulation program is provided in appendix C. 

Determination of the next event is governed by the data available in the 

trace files. Each transaction in the trace files contains a sign, return address, and 

a size. Plus sign means allocation, and minus sign means deallocation.  The 

remaining values represent the return address in hexadecimal format and the size 

of each allocated or deallocated chunk. The probability of performing memory 

access is an input parameter. Processes that suffer from memory leak problem 

usually call malloc() more often than free(). Trace files govern how and when 

malloc and free will be called. In reality, calling malloc() and free() are process 

dependent. On one hand, we may find a process with no single memory allocation 

or deallocation statement.  On the other hand, the majority of the statements in 

some other processes might be memory allocation and deallocation.  

In the next sub-sections, we introduce the simulation assumptions, the input 

and output parameters, the simulation model, and discuss several experiments 

that illustrate the MLD performance measures.  
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5.2.3 Simulation Assumptions 

The following assumptions are taken under consideration: 

 The demand paging is used. 

 A global replacement strategy is used. Victim pages are selected according 

to LRU strategy. The impact of the replacement policy on the MLD is not 

investigated in this thesis. This could be the subject of a future research. 

 Trace files are considered valid representations to real-world application. 

 A process under simulation is highly influenced by the input parameters 

such as RAM size, Max heap size, heap size threshold, 

page_age_threshold, whether it is running with other processors or running 

alone, and page file size. 

5.2.4 Input and Output Parameters 

 Appendix A lists the input and output parameters used in the simulation 

program respectively. 

5.2.5 Simulation Model 

According to one of the input parameters, AgingFlag ( Appendix A), the 

simulation program can run a simulated process according to the following two 

models: 
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a. Demand paging model: if the input AgingFlag is reset the simulation 

program runs a process according to the normal demand paging model and 

does not perform any action of the MLD algorithm. 

b. Demand paging model with the MLD: if the input AgingFlag is set the 

simulation program runs a process according to the modified demand 

paging model that implements the MLD algorithm. 

AgingFlag is used so that the same simulation program can compare the 

behavior of a process under the normal situation with the behavior of the same 

process under the MLD algorithm.  

5.2.5.1 Simulation Model (Demand Paging) 

This simulation model models the virtual memory system. Virtual memory 

is a technique that allows processes to execute while not being completely 

available in physical memory. We have chosen to implement the model by demand 

paging. This is the most commonly used approach in real-life operating systems. 

Process 1    Process 2      Process 3        Process n 
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Figure 25: Virtual memory system implemented by demand paging 

 
As shown in figure 25, the simulation model can run (n) number of 

processes where n is an input parameter. Each process has its own page table  

and competes with other processes on the shared physical memory. The 

figure shows how pages one and two of process three are both valid and available 

in memory. It also shows that page (m) is invalid and available on disk and it has 

to be swapped-in once needed. 
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5.2.5.2 Simulation Model of Demand Paging with MLD Algorithm 

The simulation model is updated to reflect the MLD major parts listed in the 

block diagram (figure 6). We show the model with the MLD algorithm in figure 26. 

In addition to demand paging, the model now implements bookkeeping() and the 

sweeper() 

    Process i     
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FIGURE 26: VIRTUAL MEMORY SYSTEM IMPLEMENTED BY DEMAND PAGING WITH MLD 
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5.2.6 Simulation Results 

5.2.6.1 Time versus Heap Size  

In this experiment, shown in figure 27, we run two processes; process zero 

(p0) and process one (p1). We set the input parameters to make both processes 

read from the same trace file. The only difference between p0 and p1 is that p1 

implements the MLD algorithm and p0 does not. The Heap_Size_Threshold for p1 

is set to 80% of the maximum heap size. We run the experiment and record the 

following statistics versus time as shown in table 7. 

 

Time 
MaxHeapSiz
e 

80%Theshol
d 

P0_HeapMaxSiz
e 

P1_HeapMaxSizeW_ML
D 

1000 2097152 1677721.6 169441 169441 

2000 2097152 1677721.6 341528 341528 

3000 2097152 1677721.6 509593 509593 

4000 2097152 1677721.6 619021 619021 

5000 2097152 1677721.6 761058 761058 

6000 2097152 1677721.6 900351 900351 

7000 2097152 1677721.6 1049641 1049641 

8000 2097152 1677721.6 1234014 1234014 

9000 2097152 1677721.6 1405741 1405741 

10000 2097152 1677721.6 1557247 1557247 

11000 2097152 1677721.6 1745974 1682868 

12000 2097152 1677721.6 1864535 1682868 

13000 2097152 1677721.6 2050102 1692461 

14000 2097152 1677721.6 2195087 1711977 

15000 2097152 1677721.6 2380028 1731262 

16000 2097152 1677721.6 2600321 1791244 

17000 2097152 1677721.6 2748867 1825067 

18000 2097152 1677721.6 2946119 1888295 

19000 2097152 1677721.6 3114711 1967552 

20000 2097152 1677721.6 3287400 2028340 
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21000 2097152 1677721.6 3509536 2123939 

22000 2097152 1677721.6 3688190 2189165 

23000 2097152 1677721.6 3713226 2206496 

24000 2097152 1677721.6 3713226 2206496 

 

Table 7: Heap Size versus Time 
The Heap_Size_Threshold for p1 is set to 80% of the maximum heap size 

as shown in the triangle-line in figure 27. The maximum heap size is an input 

parameter for this experiment and is shown as a squared-line. Theoretically, 

maximum heap size in some platforms is equal to 232 bytes. 

The experiment results show that heap size is growing with time for both 

processes which is expected since they allocate and never deallocate memory. P0  

crosses the maximum heap size border at time (t1 = 20000). p1 keeps 

running for a longer period than p0. p1 activates the sweeper just after the 

threshold of 80% is reached as shown in point (S = 11000). The sweeper makes 

extra room for new allocations. However, p1 also crosses the line of the maximum 

heap size but at time (t2). In this simulation, we allow processes to go beyond the 

maximum size of the heap in order to collect statistics.  
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In reality, p0 will crash at t1 whereas p1 will crash at t2. t1 and t2 are the 

points in time where heap space is exhausted for processes p0 and p1 

respectively. We conclude from this experiment that p1 with the MLD algorithm 

lives longer than p0.  

  

Figure 27: Experiment One: Time Vs Heap Size 
The scenario of this experiment was one of the worst possible scenarios 

and yet, p1 with MLD proved to live longer for a delta time period equal to t2-t1 as 

follows: 

12 ttt   

Where:    

Time Vs Max Heap Size

Time

MaxHeapSize

80%Theshold

P0_HeapMaxSize

P1_HeapMaxSizeW_MLD
S 

t1 t2 

∆t 



www.manaraa.com

108 

 

t1 is the crash time of process (p0) that does not implement the MLD and 

t2 is the crash time of process (p1) that implements the MLD 

In more relaxed experiments (scenarios), the delta time period may be big 

enough to satisfy the customer of the process p1 or makes p1 just survive until 

critical time in mission-critical applications is passed. After all, removing 

unreachable objects and saving the corresponding space on the heap for future 

allocations is better than just doing nothing.  

5.2.6.2 Page Age Threshold (Page_Age_Theshold) Vs False Negatives and 
Overhead Cost 

In this experiment, we test the effect of choosing different values for 

Page_Age_Threshold, an input parameter to the MLD, on the number of false 

negative objects and overhead cost. False negative objects are unreachable 

objects that were not identified by the MLD algorithm. The simulation is set to run 

the same trace file ten different times as shown in table 8. In each single run, we 

record the number of false negative objects and the overhead. The overhead is a 

counter that represents how many times the sweeper() is called. Calling the 

sweeper() more often means incurring more cost and vice versa. The 

Page_Age_Threshold is computed dynamically to be equal to a constant (K), an 

input parameter, times the average page age(AvgAge) as follows: 

 AvgAgeKThresholdAgePage __  

 Where: K is a constant parameter, 
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AvgAge is the average page age that is computed accumulatively 

during run time and adjusted to include every aging page, and  

OverHead is the number of times the sweeper() is called. 

Trace file, trace0, is used for this particular experiment. From table 6, we already 

know that this file has 4976 injected leaky objects with total size of 3401804 bytes. 

Trace file; trace1, is a lengthier file and it produces a close results. 

# 
of 

run 

Constant 
(K) 

#Injected 
leaky 

objects 
(a) 

#Recovered 
objects 

 
(b) 

#False 
NEGs 

 
(a-b) 

Percentage of false 
NEGs to injected 

 
(a-b)/a  *100 

OverHead 
counter 

1 0.05 4976 2627 2349 47% 6676 

2 0.1 4976 2603 2373 48% 6561 

3 0.15 4976 2626 2350 47% 6176 

4 0.25 4976 2577 2399 48% 5896 

5 0.5 4976 2475 2501 50% 5026 

6 0.75 4976 2394 2582 52% 4267 

7 1 4976 2384 2592 52% 3750 

8 1.25 4976 2257 2719 55% 3165 

9 1.5 4976 2125 2851 57% 2820 

10 1.75 4976 2041 2935 59% 2399 

 

Table 8: False Negatives Vs different values of Page_Age_Threshold 
 

On one hand, as shown in figure 28 in the Xed-line, the number of false 

negatives is proportionally increasing with the increase in the 

Page_Age_Theshold. This result is expected since the algorithm will identify less 

leaky pages as the Page_Age_Threshold increases. 
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 In fact, if the Page_Age_Threshold is very small then most of the pages in 

the virtual space will be aging pages and the MLD will look into them for leak. In 

this case, a few 

 unreachable objects will go undetected which decreases the number of 

false negatives. If the Page_Age_Threshold value is extremely high the MLD will 

rarely find an aging page which increases false negatives. 

 

FIGURE 28: PAGE_AGE_THRESHOLD VS NO OF FALSE NEGATIVES AND OVERHEAD 

  

Page Age Threshold Vs Overhead and NO. of False Negatives

Constant (K)

Recoverd LeaK

False NEGs
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On the other hand, the overhead value associated with calling the 

sweeper(), shown in figure 28, the circled-line, decreases as the page age 

threshold increases. This result is also expected. The MLD calls the sweeper() less 

often as the Page_Age_Theshold increases. 

The triangle-line goes exactly the reverse of the Xed-line. We provide it for 

clarity purposes. As the number of false negative objects increases the number of 

the recovered objects decreases and vice versa. 

This experiment concludes that small Page_Age_Threshold values lead to 

small number of false negatives and high overhead and vice versa. In this case 

our recommendation is system dependent. If the system can tolerate high 

overhead cost, then use a small value for Page_Age_Threshold and minimize the 

number of false negatives; otherwise increase the Page_Age_Threshold as much 

as the system can tolerate the overhead cost. Some systems can tolerate 

overhead cost by using parallel programming and multiple processors. In this case, 

the sweeper() can be assigned to a set of processors  having the system not worry 

about the overhead. As mentioned earlier, a telemetry tool can provide a great help 

in tuning Page_Age_Threshold parameter and make the administrator visualize 

the effect of tuning this parameter on the overhead cost. 
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5.2.6.3 Page Size Vs False Negatives 

This experiment shows the relation of page size to the number of false 

negative objects. We run this experiment on trace file, trace0, by varying page size 

from 1Kb to 16KB and record the statistics shown in table 9. 

Page 
Size(KB) 

#Recovered 
Objects 

#FalseNegs 
Objects 

1 2314 2662 

2 2531 2445 

4 2698 2278 

8 2829 2147 

16 3021 1955 

 Table 9: page size versus false negative objects 
The data is plotted in figure 29 below 

 

Figure 29: Page Size Versus Number of False Negative objects 
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Page Size(KB)
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The figure shows that as the page size increases the number of false 

negatives decreases. This occurs because once a page is aged all of the 

unreachable chunks it contains will be removed altogether. The higher the page in 

size the higher the number of unreachable chunks it contains. Once these chunks 

are removed the number of recovered objects will be increased and therefore the 

number of false negatives will be decreased. 

 This finding is contrary to the intuitive argument, that if only one chunk in 

the virtual space is active, while the other chunks have leaked, then the 

corresponding physical page remains active and the leaks in that page will not be 

detected. This argument is true to a certain degree, but the global replacement 

strategy of LRU algorithm will force some pages to age by choosing them as victim 

pages even though they contain live chunks. The sweeper() will detect such aging 

pages if it is set to work on a small page_age_threshold. The sweeper() will remove 
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 all of the unreachable chunks in these pages even if it has a relatively smaller age. 

The higher the size of the page the higher the number of the unreachable chunks 

it contains, and therefore the smaller the number of false negatives will be. 

5.3 Simulation Results of the MLDR 

A trace-driven simulation program is built in order to validate, verify, and 

provide a proof of concept to the MLDR algorithm. In the next sub sections, we 

discuss the major results of this simulation program. 

5.3.1 Time versus Heap Size  

Time is shown versus heap size in figure 30. In this experiment, we run two 

processes; process zero (p0) and process one (p1). We set the input parameters 

to make both processes read from the same trace file. The only difference between 

p0 and p1 is that p1 implements the MLDR algorithm and p0 does not. We run the 

experiment and record the following statistics versus time as shown in table 10. 

The Maximum Heap Size is system dependent. For this experiment, the maximum 

heap size is an input parameter. 
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Time MaxHeapSize 80%Theshold P0_HeapAllocatedSize 

P1_Heap_Allocated
_ 
Size_MLDR 

1000 2097152 1677722 169441 169441 

2000 2097152 1677722 341528 341528 

3000 2097152 1677722 509593 509593 

4000 2097152 1677722 619021 619021 

5000 2097152 1677722 761058 761058 

6000 2097152 1677722 900351 900351 

7000 2097152 1677722 1049641 1049641 

8000 2097152 1677722 1234014 1234014 

9000 2097152 1677722 1405741 1405741 

10000 2097152 1677722 1557247 1557247 

11000 2097152 1677722 1745974 1682868 

12000 2097152 1677722 1864535 1682868 

13000 2097152 1677722 2050102 1658285 

14000 2097152 1677722 2195087 965517 

15000 2097152 1677722 2380028 889703 

16000 2097152 1677722 2600321 804142 

17000 2097152 1677722 2748867 743908 

18000 2097152 1677722 2946119 698117 

19000 2097152 1677722 3114711 710462 

20000 2097152 1677722 3287400 719379 

21000 2097152 1677722 3509536 630856 

22000 2097152 1677722 3688190 581057 

23000 2097152 1677722 3713226 710462 

24000 2097152 1677722 3713226 719379 

 

Table 10: Heap Size versus Time 
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The Heap_Size_Threshold for p1 is set to 80% of the maximum heap size 

as shown in the triangled-line in figure 30. The maximum heap size is shown as a 

squared-line. Theoretically, the maximum heap size in some platforms is equal to 

232 bytes. 

The experiment results show that heap size is growing with time for both 

processes. This result is expected since both processes allocate and never 

deallocate memory. P1 does not start deallocating until heap size threshold is 

reached. P0 crosses the maximum heap size border at time (t). The simulation 

allows the program to run beyond the maximum heap size in order to record 

statistics. In reality, time (t) is the time at which process p0 crashes due to failure 

in allocating additional space for the application to keep going. p1 starts the backup 

and aging module of the MLDR at point (S) when the 80% threshold is reached. 

The backup and aging module of the MLDR makes extra room for new allocations. 

By removing unreachable chunks and backing up aging reachable chunks for p1,  
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we can save enough room for p1 to keep going. 

Figure 30: Experiment One: Time Vs Heap Size  

5.3.2 Time versus Heap Size for both of the MLD and MLDR 

For the sake of comparison among a regular process, a process with the 

MLD and a process with the MLDR, we repeat the previous experiment by showing 

these three types of processes.  

 

Figure 31: Time versus heap size comparison between MLD and MLDR 

Figure 31 shows the same processes listed in Figure 30. However, this time 

we include an additional process(p2). P2 is a process that implements the MLD as 

explained in chapter 3 of this dissertation. P2 is shown as a filled-circled line. The 

figure shows the following results: a regular process crashes once the maximum 

heap size limit is reached. A process with the MLD starts sweeping and saves 

extra room for new allocations and makes the application live longer for a delta 

time period. In some scenarios, a process with the MLD will crash if it fails to satisfy 

allocation requests. A process with the MLDR, however, provides much more room  
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once a heap size threshold is reached and prevents crashing. This result is 

not always true because it is dependent on some input parameters that we have 

already discussed in crash preventing in chapters 3 and 4.  

5.3.3Time versus Heap Size and Disk Space Used 

The backup and recovery mechanism of the MLDR works by saving space 

on the virtual address space. The MLDR moves potentially leaky objects to disk. 

Table 11 lists the results of this experiment; time versus heap allocated size and 

disk space used given 80% threshold value is used. 

Time 80%Threshold 

Heap 
Allocated 
Size 

Disk 
Space 
Used 

1000 1677722 57359 0 

2000 1677722 195695 0 

3000 1677722 265621 0 

4000 1677722 358133 0 

5000 1677722 422128 0 

6000 1677722 513125 0 

7000 1677722 580893 0 

8000 1677722 628770 0 

9000 1677722 723789 0 

10000 1677722 824466 0 

11000 1677722 955641 0 

12000 1677722 1061927 0 

13000 1677722 1195961 0 

14000 1677722 1333416 0 

15000 1677722 1448488 0 

16000 1677722 1598918 0 

17000 1677722 1677722 0 

18000 1677722 980570 697254 

19000 1677722 918643 759181 

20000 1677722 839608 838216 

21000 1677722 747474 930350 

22000 1677722 703162 974662 
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23000 1677722 679870 1017864 

24000 1677722 699729 1008085 

25000 1677722 634412 1083417 

26000 1677722 573913 1153619 

27000 1677722 548118 1187049 

28000 1677722 564793 1215291 

29000 1677722 613900 1231088 

30000 1677722 631011 1283338 

31000 1677722 635194 1308675 

Table 11: Time versus heap size and used disk space 
 

The table results are shown in Figure 32. The figure shows that when a process 

reaches the threshold line it starts the backup and recovery module. It backs up 

the potentially leaky chunks to disk. 

 

 
 

Figure 32: Time versus disk space used 

 

The disk space used remains zero as long as the heap size threshold is not 

reached. Once the threshold limit is reached, the recovery and backup of MLDR 

starts working and, as a result, the disk space used starts increasing and the heap 

allocated size starts decreasing. 
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5.3.4 Page Age Threshold Vs False Negatives, False Positives and 

Overhead Cost 

In this experiment, we test the effect of choosing different values for 

Page_Age_Threshold, an input parameter to MLD, on the number of false negative 

objects, false positive objects, and overhead cost. False negative objects are 

unreachable objects that have not been identified by the MLD algorithm. False 

positive objects are objects that are identified as leaky and have been 

dereferenced after the system has moved  them to disk. Overhead cost is 

associated with the number of disk backup and recovery operations. Increasing 

the number of backing up objects or recovering them has a performance cost. The 

simulation is set to run the same trace file ten different times as shown in table 12. 

In each single run, we record the number of false negative objects, false positive 

objects, and the overhead. The experiment is conducted on trace file (trace0) and 

the results are shown in figure 33.  

# of run Constant 
(K) 

#Injected 
leaky 

objects 

#Recovered 
objects 

#False 
NEGs 

#False 
Positives 

Overhead 
Cost 

      

(a) (b) (a-b) 

1 0.05 4976 2596 2618 11024 24213 

2 0.1 4976 2609 2603.7 10472 23092 

3 0.15 4976 2596 2618 10479 23117 

4 0.25 4976 2520 2701.6 10081 22236 

5 0.5 4976 2479 2746.7 8332 18553 

6 0.75 4976 2347 2891.9 7109 16007 

7 1 4976 2318 2923.8 5804 13380 

8 1.25 4976 2207 3045.9 4225 9992 

9 1.5 4976 2185 3070.1 2868 7170 

10 1.75 4976 2107 3155.9 1603 4571 

Table 12: Page age threshold versus False Negatives, false positives and overhead  
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The results are shown in figure 33.  

 

FIGURE 33: PAGE_AGE_THRESHOLD VS NO OF FALSE NEGATIVES AND OVERHEAD 

On the one hand, the number of false negatives as represented by a filled-

squared-line is proportionally increasing as the Page_Age_Theshold increases. 

This result is expected since the algorithm will identify less leaky pages as the 

Page_Age_Threshold increases. In fact, if the Page_Age_Threshold is very small 

then most of the pages in the virtual space will be aging pages and the MLDR will 

look into them for leak. In this case, a few unreachable objects will go undetected 

which decreases the number of false negatives. If the Page_Age_Threshold value 

is extremely high the MLDR will rarely find an aging page which increases false 

negatives. 

On the other hand, both of the number of false positives and the overhead 

cost value associated with the backup and recovery module decrease as the page 

age threshold increases. This result is also expected. The MLDR will call the 

backup and recovery module less often as the Page_Age_Theshold increases. 
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This experiment concludes that small Page_Age_Threshold values are 

associated with small number of false negatives and a relatively large number of 

false positives and an increase in the overhead cost and vice versa. In this case, 

our recommendation is system dependent. If the system can tolerate high 

overhead cost, then use a small value for Page_Age_Threshold and minimize the 

number of false negatives; otherwise increase the Page_Age_Threshold as much 

as the system can tolerate the overhead cost. Some systems can tolerate 

overhead cost by using parallel programming and multiple processors. In this case, 

the backup and recovery module can be assigned to a set of processors and use 

a fast accessed disks. As mentioned in chapter 3, a telemetry tool can provide a 

great help in tuning the MLD. A telemetry tool can also be very handy in tuning up 

the MLDR and it’s parameters in order to reduce false negatives under a given 

tolerable cost. 

5.4 Comparing MLD and MLDR to Current Solutions 

In this section, we compare the MLD and the MLDR to current memory leak 

solutions. We list both of similarities and differences. First, we compare the MLD 

and the MLDR to SWAT, a well-known debugging tool used by Microsoft group. 

Then, we compare the MLD and the MLDR to Garbage collectors. 
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5.4.1 MLD and MLDR versus SWAT 

Table 13 compares SWAT to the MLD and MLDR according to the following 

criteria: i) goal of the tool, ii) memory leak detection, iii) age tracking, iv) memory 

leak reporting, v)  false negatives , vi) false positives, vii) time used, viii) stale 

objects , ix) staleness predicate,   and x) overhead. 

Goal  of 

the tool 

SWAT: 

- Provide run-time checking (debugging) tool. 

- Can ship with production code in order to detect errors 

during real use. 

- Can not delay or prevent crashing. It does not provide a run-

time solution. It can not decide by its own to delete 

unreachable objects. 

MLD and MLDR: 

- MLD provides a partial run-time solution 

- MLDR provides a complete run-time solution 

- Can delay or prevent crash by making enough room to new 

allocations via removing unreachable objects. 

Memory 

leak 

detection 

SWAT: 

If a heap object has not been accessed for a long time then it is a 

memory leak. 

MLD and MLDR: 

If a page in the page table has not been accessed for a long time 

then it is a potential leaky page that may contain leaky objects. 
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Age 

tracking  

SWAT: 

- Age is tracked per every single object in the heap (the term 

age is not used explicitly in SWAT) 

- Since these objects in the heap are very large a sampling 

approach is used to build a heap model for all allocated 

objects from a statistical sampling trace of access to heap 

virtual address space. 

MLD and MLDR: 

- Age is tracked per pages  

- Use hardware available in physical memory. 

- Time stamp the corresponding page in page table of the 

paged-out page. 

Memory 

Leak 

Reporting 

SWAT: 

At the end of an application run. ( The normal behavior of a 

checking/debugging tool) 

MLD and MLDR: 

Found leaks are removed if they are unreachable in MLD. The 

MLDR removes during run-time both of stale and unreachable 

chunks. 

False 

negatives 

SWAT: 

False negatives are not generated since tracking is made per each 

object in the heap.  

MLD and MLDR: 

False negatives might be generated. Tracking liveness per page 

may make some leaky chunks in some pages go undetected 

because some other chunks are alive. 
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False 

positives 

SWAT: 

Some of leak detected is false positive. It is the responsibility of the 

developer to decide whether these leaks are real or NOT. 

MLD and MLDR: 

- MLD produces zero false positives because it uses a 

conservative approach. 

- MLDR handles the problem of false positives by providing a 

recovery module. 

Time 

used 

SWAT: 

Use number of accesses to represent time. Does not use wall clock 

time to measure staleness, this avoids labeling objects of an 

interactive application that left idle overnight as stale. 

MLD and MLDR: 

Use clock time to time stamp last use of a page. The time threshold 

can be well-tuned to avoid misidentifying idle objects in interactive 

applications as stale. 

Stale 

objects 

SWAT: 

Can detect stale objects and report them to the developer. 

MLD and MLDR: 

The MLD can only handle unreachable objects. The MLD can 

theoretically detect stale objects but it does not because it can not 

decide whether to remove these objects or not and contribute to 

the overall run-time solution by providing extra room for new 

allocations. 

The MLDR can detect and handle both of the stale and 

unreachable objects and can contribute to the overall run-time 

solution by removing these objects and recover in case they were 

misidentified. 
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Stalenes

s 

predicate 

SWAT: 

Staleness predicate decides whether an object is leaked or not 

according to: 

a. (never accessed) if the object is never accessed 

b. (constant time) if the idle time is greater than a threshold 

c. (Active time) if the idle time is greater than ( N * active time). 

If the object has been active for a long time it is allowed to 

be inactive for a long time. 

MLD and MLDR: 

If the page age is greater than a tunable threshold. This tunable 

threshold can replace all of the three suggested measures used in 

SWAT. 

 

Overhea

d 

SWAT: 

Minimize overhead by sampling the accesses made to the heap. 

MLD and MLDR: 

- MLD and MLDR track pages and SWAT track individual 

chunks. 

- Time stamping is more efficient in MLD and MLDR since we 

exploit the physical available hardware. 

- SWAT spends considerable time in searching the heap 

model and keeping track of time. 

 
Table 13: The MLD and MLDR versus SWAT 
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5.4.2 MLD and MLDR versus Garbage Collectors 

All of the MLD, MLDR and garbage collectors provide some sort of a run-

time solution to memory leak problem. Garbage collectors are limited to languages 

designed with garbage collection in mind. Garbage collectors can only handle 

unreachable objects. They can not recover stale objects because the virtual 

memory system does not allow for such a solution. The MLD and MLDR are not 

limited to specific languages. Both of the MLD and MLDR utilize the aging in the 

physical memory (a new approach) to detect memory leak in the virtual address 

space. The MLD is similar to garbage collectors in terms in can handle unreachable 

objects by using a conservative approach; whereas the MLDR can handle both of 

the unreachable and stale objects. The MLDR along with the ML-VMS is the only 

algorithm, to our knowledge, that provides a complete run-time solution. The 

MLDR can decide during run-time to remove stale objects to save extra room in 

the virtual address space. If these stale objects are turned out to be false positives 

then the MLDR is able to recover these objects. 
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5.5 Conclusion 

 
This chapter analyzes the performance of the MLD, MLDR, and the ML-

VMS. The MLD have the complexity of O(n2). The ML-VMS has significant effect 

on the performance of the computer system. ML-VMS adds additional layer on the 

demand paging system. In addition to the cost paid by the demand paging memory 

system, ML-VMS may incur the cost of accessing a disk either to backup a chunk 

or to recover another chunk in case of false positives. 

The performance cost can be reduced by 1) reducing the probability of 

incurring false positives to the minimum. Increasing the page age threshold value 

reduces the false positive rate and, as a result, reduces the performance cost, 2) 

storing the backed up objects on the swap space instead of the regular disk. Swap 

space is usually faster than that of the file system and 3) suggesting parallel 

programming to enhance the performance. 

The MLD is validated, verified and proved to be sound using a trace-driven 

simulation program. A benchmark was designed and built to provide the simulation 

program with allocation and deallocation transactions that simulate a target 

application. The simulation results have shown that the MLD is capable of 

removing unreachable objects and provide more room for new allocations. 

Applications that exploit this algorithm are shown to live longer than the 

applications without it. The false negative rates and overhead were shown to be 

highly dependent on some input parameters like Page_Age_Threshold and system 

parameters like Page_Size.   
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The ML-VMS and the MLDR are also validated, verified and proved to be 

sound using a trace-driven simulation program. The simulation results show how 

the problem of false positives and false negatives can be reduced under given 

tolerable cost. They also show how the MLDR can prevent an application from 

crashing once a certain heap size threshold is reached 
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Chapter Six 
Conclusions and Future Works 

 

This chapter provides basic conclusions as well as directions for future 

research. 

6.0 Introduction 

This dissertation provides a novel approach for dynamic memory 

management, a multi-layer virtual memory system (ML-VMS). The ML-VMS 

reorganizes the currently used dynamic memory management and dynamic 

memory allocation mechanisms in order to solve or overcome the problem of 

memory leak. 

In addition to the ML-VMS, this dissertation provides two new approaches 

for memory leak detection and recovery. The first is memory leak detection (MLD) 

using aging in physical memory. This algorithm reflects both the physical and 

virtual behavior of memory allocation and benefits from the hardware support 

available for tracking physical pages in real memory. The latter is memory leak 

detection and recovery (MLDR) based on the ML-VMS. The MLDR uses the 

physical memory aging as a mechanism of leak detection and builds on the ML-

VMS to provide a complete run-time solution to the memory leak problem. 

6.1 Results 

Results are discussed in terms of the factors that generally affect memory 

leak detection and recovery tools such as: performance, crash preventing or crash 

delay, false negatives, false positives, and run-time solution.  
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6.1.1 Performance 

The performance analysis conducted for the MLD, MLDR and the ML-VMS 

has shown that the MLD has the complexity of O(n2) and that the ML-VMS has 

significant effect on the performance of the computer system. The ML-VMS adds 

additional layer on the demand paging system. In addition to the cost paid by the 

demand paging memory system, the ML-VMS may incur the cost of accessing a 

disk either to backup a chunk or to recover another chunk in case of false positives 

as shown in equations 1 through 4 in chapter 5. 

The performance cost is reduced by 1) reducing the probability of incurring 

false positives to the minimum. Increasing the page age threshold value reduces 

the false positive rate and, as a result, reduces the performance cost, 2) suggesting 

that the backed up objects are stored on the swap space instead of the regular 

disk. Swap space is usually faster than that of the file system and 3) suggesting 

parallel programming to enhance the performance. Figure 33 is repeated below to 

illustrate how increasing the page age threshold; an input parameter, can reduce 

the overhead cost. 
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Decreasing the page age threshold in order to minimize the number of false 

negatives adds a cost on performance by calling the sweeper() more often. This 

additional sweeping increases the cost. So, there is a trade off. Decreasing false 

positives enhances performance; whereas decreasing false negatives adds to the 

cost. The cost of sweeping in the case of the MLDR is much higher than the cost 

of sweeping in the MLD because the MLDR sweeping process requires an 

additional work. The MLDR backs up removed chunks to the disk in case they 

might be used again. Writing to a disk is a costly operation in the virtual memory 

system. If the system can tolerate the cost, then use a small value for 

Page_Age_Threshold and minimize the number of false negatives; otherwise 

increase the Page_Age_Threshold as much as the system can tolerate. Some 

systems can tolerate overhead cost by using parallel programming and multiple 

processors. In this case, the sweeper() can be assigned to a set of processors 

having the system not worry about the overhead. A telemetry tool can provide a 

great help in tuning the input parameters and make the administrator visualize the 

effect of tuning these parameters on the overhead cost. 

6.1.2 Crash Preventing 

The MLD can delay a possible application crash for an application 

dependent period of time. In case the crash is imminent, the MLD will not prevent 

it. One big enhancement of the MLDR over the MLD is that the MLDR can prevent 

the target application from crashing if the input parameters are well-tuned. Among  
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these parameters are Heap_Size_Threshold, Page_Age_Threshold, and 

Sweeper_Sleep_Time. The MLDR removes both of the unreachable objects and 

stale or useless objects, in an aging page, in order to make enough room for new 

allocations. The requested size for allocation is guaranteed to be always available 

assuming a large disk is used. We repeat figure 31 below to illustrate our 

conclusion on crash preventing 

 

The figure shows the following results: a regular process (p0) crashes once 

the maximum heap size limit is reached. A process with the MLD (p2) starts 

sweeping and saves extra room for new allocations and makes the application live 

longer and delay a possible future crash for a delta time (∆t) period. In some 

scenarios, a process with the MLD will crash if it fails to satisfy allocation requests. 

A process with the MLDR (p1), however, provides much more room once a heap 

size threshold is reached and prevents crashing.  
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Crash preventing performed by the MLDR sweeper(), however, is not 

always guaranteed for several reasons. These are the same reasons that apply to 

the crash delay for the MLD. Among these reason are: 1) setting 

Heap_Size_Threshold to a relatively large value which delays the startup of the 

Sweeper(), 2) setting the Sweeper_Sleep_Time to a large value that makes the 

sweeper() not able to cope with the speed of the allocation operations being made 

by the target application. We have to keep in mind that allocation operations are 

process dependent, and 3) Setting the Page_Age_Threshold to a relatively large 

value which makes it more difficult for the Sweeper() to identify enough leaky 

pages. In fact, the Sweeper() fails to identify any single leaky page if the 

Page_Age_Threshold is extremely large. In case the Sweeper() fails to ensure that 

the required space is available on the heap to satisfy allocation requests, the target 

application will crash. 

If our system can tolerate performance overhead cost paid by the 

sweeper(), the general rule of thumb is to minimize all of the already mentioned 

three input parameters. Minimizing Heap_Size_Threshold makes the sweeper() 

start early and provides enough space before it is too late. Minimizing 

Page_Age_Theshold makes the MLDR identify more aging pages and provide 

more enough room. Minimizing Sweeper_Sleep_Time makes the MLDR run the 

sweeper more frequently and, as a result, identify more aging pages. 
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6.1.3 False Negatives  

False negatives are leaky chunks that go undetected. Both of the MLD and 

the MLDR do not totally remove false negatives. The MLDR is similar to the MLD 

in terms that it can minimize the number of false negatives by decreasing the 

Page_Age_Threshold. Decreasing Page_Age_Threshold makes both approaches 

identify more leaky objects and, as a result, decrease the number of leaky chunks 

that will go undetected. After all, several numbers of false negatives can be 

tolerated since the the MLD and the MLDR will help to keep the application running.  

6.1.4 False Positives 

“False positives” means a detected leak is not a real leak. The object 

identified as a potential leak gets dereferenced after the system has given up on 

it! Referencing an object after it has been removed from memory, i.e., deallocated, 

causes incorrect results or the program to crash altogether. False positives can 

not be tolerated in critical mission applications.  

We have seen that the MLD produces zero false positives because it 

implements a conservative approach that considers every a like pointer a pointer. 

The new structure of the ML-VMS allows the MLDR to remove all aging chunks if 

they are reachable or unreachable. The problem of false positives occurs when a 

reachable chunk that has not been used for a relatively long period of time is aged. 

In that case, the MLDR will remove these aged chunks to disk and falls in the false 

positive problem in case any of them get dereferenced. The MLDR provides a  
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solution to false positives problem based on the ML-VMS using the object 

recovery module of the algorithm. If a false positive object is deleted from the heap 

and get dereferenced later by the application the deleted object is recovered. 

6.1.5 Run-time solution 

Current approaches for solving memory leak problem are not thorough; they 

either detect memory leak in development environments as performed by static 

analysis tools which requires the existence of source code or they garbage collect 

unreachable objects as performed by garbage collectors. These collectors provide 

partial solution only in the languages that were designed with garbage collection 

in mind. There is no complete run-time solution available. 

The MLD uses a conservative approach to remove unreachable objects and 

save address space. It is similar to garbage collectors in terms of removing 

unreachable objects. However, it uses memory aging as a method of leak detection 

and it has the advantage of being suitable to applications that do not have a built-

in garbage collection.  

The MLDR provides a thorough run-time solution. It handles the problem of 

false positives, false negatives, and prevents target applications from crash due to 

the lack of virtual memory given a well-tuned parameters and that a target 

application can tolerate an additional overhead cost. The MLDR is recommended 

for mission critical applications that have to live for a long time and can tolerate a 

controllable overhead cost.  
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6.2 Simulation Results 

 All of the MLD, the MLDR and the ML-VMS are simulated using a trace-

driven simulation program that utilizes the trace generated by a benchmark that 

we develop for this purpose. The simulation results, as shown in chapter 5, are 

used to illustrate the new approaches’ validity and to provide a proof of concept 

along with the performance analysis. 

6.3 Implementation Guidelines 

 This dissertation provides guidelines that facilitate an implementation of the 

MLD, the ML-VMS, and the MLDR. It shows the necessary structures needed 

(VHT, MallocTable), input and out parameters, adjustments necessary to the page 

table, adjustments necessary to the memory allocations and deallocations 

functions, and suggests implementing the bookkeeping functionality in the memory 

page replacement algorithm such as LRU. 

6.3 MLD versus MLDR 

Table 14 shows a quick reference for comparison between the MLD and the 

MLDR provided in this dissertation. This table is provided as a quick reference. 

Details about comparison criteria are already provided in this dissertation. 

                                Approach 

Comparison criteria 

MLD MLDR 

Produce false negatives Yes Yes 

Can handle false positives NO Yes 

How to deal with possible crash Can delay crashes Can prevent crashes 
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Can handle stale objects NO Yes 

Provide run-time solution Yes/partial Yes/complete 

False positive recovery Irrelevant Yes 

Overhead Low Relatively high 

Table 14: MLD versus MLDR 

6.4 Future work 

This dissertation opens different areas for future research as follows: 

1. Although the MLD algorithm was tested in a simulation environment, it 

would be better to test it on a real operating system. 

2. A telemetry tool is suggested to monitor and tune the performance 

parameters. 

3. Repeat the experiments provided in this dissertation with actual trace from 

real-world applications. 

4. Find how MLD and MLDR can be parallelized and show the effect on 

performance. 

5. We believe that the ML-VMS can provide additional benefits other than 

facilitating the solution of memory leak problem such as: solving the 

problem of dangling pointer and memory corruption. Another research in 

this area would reveal more results.  
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Appendices 
Appendix A: Input and Output Parameters of Simulation Program 

 
In this appendix, we list the simulation input parameters in Table A.1 and 

the simulation output parameters in Table A.2. 
 

Parameter  Description 

SeedIntValue The seed value for the C++ random function, rand(),  used 
in the simulation program. With different seed values, due 
to the nature of randomness, we may get different outputs. 

NumberOfProcesses Number of processes used in the simulation. In order to 
study the behavior of processes with different 
characteristics, the simulation program can simulate 
running (n) processes at the same time.  

PageFileSize(KB) In demand paging, all processes use the same page file 
size.  

MaxRAMSize(KB) RAM size in KB; We can decrease size to get quick results; 
small sized RAM causes pages to age quickly 

LocalityOfRef Locality of reference(percentage) 

ProbOfReferencingMem Probability of referencing a memory location 

GenerateDumpFile If this flag is set the simulation generate a dump file on exit 
for page table(s), heap(s), malloctable(s), and RAM in order 
to provide  full details about these structures. 

GerateStatVsTime If this flag is set the simulation records statistics vs time 

initHeapSize Initial heap size.  

pageAgeThreshold Page age threshold value 

pageAgeMul(K) A constant K explained in the dissertation. 

AgingFlag 1: means invoke aging algorithm for this process 0 Not. 
This flag is useful to compare two processes that have 
same input parameters but one invokes aging alg. And the 
other NOT. 

Table A.1: Simulation input parameters 
 

Parameter  Description 

#mallocs The number of calling malloc() 

#MemRefs  Number of times a virtual memory is referenced 

#Frees   Number of times free() is called 

H_MaxSize Heap maximum size 

H_FreeSize Heap free size 

H_LeakedSize Heap leaked size 

#H_Live_obj  Number of live objects (reachable) 

  



www.manaraa.com

145 

 

#False NEG   Number of false negatives; Real leaks that were NOT identified by 
the aging algorithm 

#FalsePOS Number of times a reference is made to an object previously 
identified as a potential leak. 
 

Table A.2: Simulation output parameters 



www.manaraa.com

146 

 

Appendix B: Benchmark Source code mldbench. H and mldbench.c 

 
mldBench.h 

 
//maximum allocations and deallocations made 
#define MAX_TRANS 600000 
//seed value to srand() function 
#define SEED  12755765  
 
#define ALLOCATED 1 
#define FREE      0 
 
//propability of allocation and deallocation  
//eventually all allocated chunks will be deallocated before 
//the bench exit this speed makes allocation faster the deallocation 
#define P_MALLOC 0.50 
#define P_FREE  0.50 
 
//probability of the next size allocation 
#define P_MIN_SIZE  0.85 
#define P_MEDIUM_SIZE  0.10 
#define P_LARGE_SIZE  0.05 
 
/* 1-256 BYTE*/ 
#define MIN_SMALL_CHUNCK_SIZE 1 
#define MAX_SMALL_CHUNCK_SIZE 256  
/* 256 BYTE -64k BYTE*/ 
#define MIN_MEDIUM_CHUNCK_SIZE 257 
#define MAX_MEDIUM_CHUNCK_SIZE 4*1024  
/* 64k BYTE -65000KB*/ 
#define MIN_LARGE_CHUNCK_SIZE 4*1024 +1 
#define MAX_LARGE_CHUNCK_SIZE 10*1024  

 
mldBench.c 
 
#include <stdlib.h> 
#include <mcheck.h> 
#include <assert.h> 
#include "mldBench.h" 
 
#ifdef DMALLOC 
#include "dmalloc.h" 
#endif 
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long  s=0;//cnt of small size chunks 
long  sSize=0;//accumulated size for small objects created 
long  m=0;//cnt of medium size chunks 
long  mSize=0;//accumulated size for medium objects created 
long  l=0;//cnt of large size chunks 
long  lSize;//accumulated size for large objects created 
 
long  allocated=0;//cnt of allocated chunks 
long  allocatedSize=0;//accumulated size for allocated objects 
long  hcnt=0;//cnt of location in array 
 
long  allocatedNotFreed=0;//cnt of allocated and not freed objects 
long  allocatedNotFreedSize=0;//Size of allocated and not freed objects 
long  freed=0;//cnt of freed objects 
long  freedSize=0;//size of freed objects 
 
void printHeapHeader (char *allocationRef[], long allocationSize[], int 
allocationStatus []); 
void printHeapLine   (long index, char trans,char *allocationRef[], long 
allocationSize[]); 
void printAllocedNotFreed (char *allocationRef[], long allocationSize[],int 
allocationStatus[]); 
void freeRemaingLiveObjects(char *allocationRef[], long allocationSize[],int 
allocationStatus[]); 
void printTrailer(); 
 
long getTheIndexOftheXthNotFreedElement(long x, int allocationStatus[]); 
long getSize(); 
 
int main () { 
  mtrace(); 
  srand(SEED);//set seed for random function 
  /*define an array of all allocations*/ 
  char * allocationRef[MAX_TRANS]; 
  /* store allocated size for each allocated chunck*/ 
  long   allocationSize[MAX_TRANS]; 
  /* allocation status 1: allocated 0: free */ 
  int   allocationStatus[MAX_TRANS]; 
   
  printHeapHeader(allocationRef,allocationSize,allocationStatus); 
   
  int trans; 
    for (trans=0;   trans<MAX_TRANS; trans++){ 
    if ((rand()%10000/10000.0) < P_MALLOC) 
    { 
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     //perform allocation 
     //generate random size [MIN_CHUNK_SIZE, MAX_CHUNCK_SIZE] 
ACCORDING TO GIVEN PROP.  
     long size=getSize(); 
     allocationRef[hcnt]= (char *) malloc(size); 
     assert(allocationRef!=NULL); 
      
     allocationSize[hcnt]=size; 
     allocationStatus[hcnt]=ALLOCATED; //allocated 
     allocated++; allocatedNotFreed++; 
     allocatedSize+=size; allocatedNotFreedSize+=size;//accumulate allocated 
size  
     //printf("A:%d: ",hcnt); 
     printHeapLine(hcnt,'+',allocationRef,allocationSize); 
     hcnt++;//next allocation cnt 
     } else { 
     /*perform deallocation*/ 
     //getRandom object to free 
     long x,index=-1; 
     if (allocatedNotFreed>0) { 
         x =rand()%allocatedNotFreed +1; //select random object x to free 
         //iterate to find x 
         index=getTheIndexOftheXthNotFreedElement(x,allocationStatus); 
  }//if 
     if (index>-1) { 
        //free object 
        allocatedNotFreed--; 
        allocatedNotFreedSize-=allocationSize[index]; 
 freed++; 
 freedSize+=allocationSize[index]; 
 //printf("F:%d: ",index); 
 printHeapLine(index,'-',allocationRef,allocationSize); 
 allocationStatus[index]=FREE;//mark as freed 
 free(allocationRef[index]);//remove object from heap 
 allocationRef[index]=NULL;//null the pointer so as not to remain dangling 
     }else { 
       // printf("No available object to free...\n");//index=-1 
  
 } 
     }//if 
   }//for 
   freeRemaingLiveObjects(allocationRef, allocationSize, allocationStatus); 
  printTrailer();  
  //printAllocedNotFreed (allocationRef,allocationSize,allocationStatus);  
  return 0; 
}//main  
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void printTrailer() { 
  //list allocations 
  
  printf ("#Small  Objects: %d Size: %d \n",s,sSize); 
  printf ("#Meduim Objects: %d Size: %d \n",m,mSize);   
  printf ("#Large  Objects: %d Size: %d \n",l,lSize); 
  printf ("Alloc'd Objects: %d Size: %d Byte \n",allocated,allocatedSize); 
  printf ("Freed   objects: %d size: %d Byte \n\n",freed,freedSize); 
  printf ("Stale:Alloc'd NotFreed: %d size: %d 
Byte\n",allocatedNotFreed,allocatedNotFreedSize); 
  }//printTrailer 
long getTheIndexOftheXthNotFreedElement(long x, int allocationStatus[] ){ 
  long index =-1; 
  long i=0; 
  long cnt=0; 
  for (i=0;i<hcnt;i++) { 
    if (allocationStatus[i]!=0) {//this object is allocated and Not Freed 
      cnt++; 
      if (cnt==x){ 
        //this is the intended object to be freed 
 index=i; 
 break; 
      }//if 
    }//if  
  }//for 
  return index; 
} 
void  freeRemaingLiveObjects(char *allocationRef[], long allocationSize[],int 
allocationStatus[]){ 
  long i=0; 
  for (i=0;i<hcnt;i++) { 
    if (allocationStatus[i]!=0) {//this object is still allocated and Not Freed 
       //free it 
   allocatedNotFreed--; 
        allocatedNotFreedSize-=allocationSize[i]; 
 freed++; 
 freedSize+=allocationSize[i]; 
 //printf("F:%d: ",index); 
 printHeapLine(i,'-',allocationRef,allocationSize); 
 allocationStatus[i]=FREE;//mark as freed 
 free(allocationRef[i]);//remove object from heap 
 allocationRef[i]=NULL;//null the pointer so as not to remain dangling      
      }//if  
  }//for 
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void printHeapHeader (char * allocationRef[], long allocationSize[], int 
allocationStatus[]){ 
 printf("MAX TRANS: %d\n",MAX_TRANS); 
  int i; 
 printf("location\tra\tsize\n"); 
 
} 
void printAllocedNotFreed (char *allocationRef[], long allocationSize[],int 
allocationStatus[]){ 
        long i=0; 
      for (i=0;   i<hcnt; i++){ 
         if (allocationStatus[i]!=0) {//allocated and not freed 
          printf("%p\t%d\n", allocationRef[i],allocationSize[i]); 
  } 
      }//for 
} 
void printHeapLine (long index,char trans, char * allocationRef[], long 
allocationSize[]){ 
       printf("%c\t%p\t%d\n",trans, 
allocationRef[index],allocationSize[index]); 
} 
long getSize() { 
     long size=1;//default value 
     float propNextSize =rand()%100000/100000.00; 
     if (propNextSize <P_MIN_SIZE ) { 
       //small size chunck 
         size=rand()%(MAX_SMALL_CHUNCK_SIZE + 1 - 
MIN_SMALL_CHUNCK_SIZE) + MIN_SMALL_CHUNCK_SIZE; 
  s++; sSize+=size; 
  }else if ((propNextSize-P_MIN_SIZE)<P_MEDIUM_SIZE){ 
  //MEDIUM size chunk 
   size=rand()%(MAX_MEDIUM_CHUNCK_SIZE + 1 - 
MIN_MEDIUM_CHUNCK_SIZE) + MIN_MEDIUM_CHUNCK_SIZE; 
   m++; mSize+=size; 
  }else { 
  //large chunks are created 
  size=rand()%(MAX_LARGE_CHUNCK_SIZE + 1 - 
MIN_LARGE_CHUNCK_SIZE) + MIN_LARGE_CHUNCK_SIZE; 
  l++; lSize+=size; 
  } 
     return size; 
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APPENDIX C: SOURCE CODE FOR SIMULATION PROGRAM 

Heap.h and Heap.cpp 

#include <fstream.h> 
 
#ifndef HEAP_H 
#define HEAP_H 
 
struct memChunk; 
typedef memChunk * chunkPtrType; 
 
class Heap { 
 
 public: Heap();//constructor 
  ~Heap();//destructor 
  long getHeapMaxSize() {return HeapMaxSize;} 
        long getHeapAllocatedSize() {return heapAllocatedSize;} 
  long getHeapAllocatedObjects () { return heapAllocatedObjects;} 
  long getHeapLeakedSize() { return heapLeakedSize;} 
  long getHeapLeakedObjects() {return heapLeakedObjects;} 
  long myMalloc(long ra,long inputSize,bool leaky);  
  // allocate inputSize and return memRef ( represent a pointer to a 
chunk) 
  bool myFree(long ra);//Free a chunk pointed to by memRef 
   
  long getMemRefToFree();//returns an allocated and NOT leaky 
chunk; 
  long getMemRefToAcess(float locality, long prevRef);//returns an 
allocated and NOT leaky chunk; 
  bool markUnAccessable(long ra); 
 
  void dumpHeap(long processID, ofstream &outputFile); 
 private: 
  void coalesce (chunkPtrType cur);//merge adjacent free chunks 
  long HeapMaxSize; // max size of the Heap 
  long heapAllocatedSize; // the allocated size from the Heap; 
  long heapAllocatedObjects; 
  long heapLeakedSize; 
  long heapLeakedObjects; 
  double getRandomProp(); 
  chunkPtrType Head; 
 
};//end class 
#endif 
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Heap.cpp 
#include "Heap.h" 
#include "List.h" 
 
#include <iostream.h> 
#include <iomanip.h> 
#include <assert.h> 
#include <stdlib.h> 
 
const int PRECISION=10000;//Four digits precision //used in getRandomProb() 
 
struct memChunk { 
 chunkPtrType previous; 
 long ra; 
 long memRef; 
 long chunkSize; 
 bool chunkIsAllocated;// true: allocated ; false: free 
 bool leaky;//true leaky chunk; false NOT leaky 
 chunkPtrType next; 
}; 
 
List *list=new List(); 
 
Heap:: Heap()  
{   //Heap initialization 
   HeapMaxSize =0; 
   heapAllocatedSize=0; 
   heapAllocatedObjects=0; 
   heapLeakedSize=0; 
      heapLeakedObjects=0; 
            Head=NULL; 
Heap:: ~Heap() {}//Should be implemented to free the heap and return it to 
memory 
// otherwise a leak will occur 
long Heap::myMalloc (long ra,long inputSize, bool leakyflag) { 
  long memr=-1; 
  heapAllocatedSize += inputSize; 
  heapAllocatedObjects++; 
  heapLeakedObjects++; 
  heapLeakedSize += inputSize;//allocation not freed is assumed leak 
     //the first allocation in an empty Heap 
     if (Head==NULL) { 
    Head = new memChunk; // first allocation 
    assert (Head!=NULL); 
    Head->ra=ra; 
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    Head->memRef =0; // 0 is the  first memRef in the 
Heap 
    Head->chunkSize = inputSize;//intially all heap is free 
    HeapMaxSize+=inputSize; 
    Head->chunkIsAllocated = true;//not allocated (free); 
    Head->leaky=leakyflag; 
    Head->next = NULL; 
    Head->previous = NULL; 
    return 0;//allocated in memory reference 0 
  } 
 
 // first fit allocation strategy 
  chunkPtrType temp,prev, cur=Head; 
  while (cur!=NULL) { 
   if ((cur->chunkSize > inputSize) && (!cur->chunkIsAllocated)) 
{ 
    //this is a free chunk with first fit 
    //split into two 1) Active (inputSize)// 2) Free 
(chunkSize-inputSize) 
    temp = new memChunk; //temp point to remaining 
free chunck 
    assert (temp!=NULL); 
    temp->memRef = cur->memRef +inputSize; 
    temp->chunkSize = cur->chunkSize -inputSize; 
    temp->ra=0; 
    temp->chunkIsAllocated =false; //remaining free 
chunk 
    temp->leaky =false; 
    temp->next = cur->next; 
                temp->previous =cur; 
     
    cur->chunkSize =inputSize; 
    cur->ra=ra; 
    cur->chunkIsAllocated =true;//allocated 
    cur->leaky =leakyflag; 
    if (cur->next !=NULL) { cur->next->previous=temp; }   
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    cur->next = temp; 
 
    return cur->memRef;//return a pointer to newly 
allocatd chunck 
   } 
   if ((cur->chunkSize == inputSize) && (!cur-
>chunkIsAllocated)) { 
    cur->ra=ra; 
    cur->chunkIsAllocated =true;//allocated 
    cur->leaky = leakyflag; 
    return cur->memRef;//return a pointer to this chunk 
   } 
  prev=cur; 
  cur=cur->next; 
  }// 
 
  if (cur==NULL) { 
   //Heap is Full; extend the Heap from the OS 
    temp = new memChunk;  
    //temp point to a chunk to be added to end of the 
Heap 
    assert (temp!=NULL); 
    temp->memRef = HeapMaxSize; 
    temp->chunkSize = inputSize; 
    temp->ra =ra; 
    temp->chunkIsAllocated =true;   
    temp->leaky =leakyflag; 
    temp->next = NULL;//Chunk at end of the heap; 
    HeapMaxSize+=inputSize;//update the max size to 
reflect the new value 
    prev->next  =temp; 
    temp->previous = prev; 
    return temp->memRef; 
 
  } 
 return memr;//should not reach this statement 
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} 
 
bool Heap::myFree(long ra){ 
 //True means freeing an allocated chunk 
 //False means either freeing already free chunk or chunk is not available; 
  
      chunkPtrType prev, cur=Head; 
   while (cur!=NULL) { 
  if (cur->ra ==ra) { 
   if (cur->chunkIsAllocated) { 
    //freeing allocatd chunk 
    cur->chunkIsAllocated=false; 
    cur->leaky=false; //free chunks are not leak 
    cur->ra=0;//will remove rturn address 
    heapLeakedObjects--; 
    heapLeakedSize -= cur->chunkSize; 
    coalesce(cur);//merge adjacent free chunks 
    return true;//success; 
   }else { 
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    //Freeing already free chunck 
     return false;//error; 
   } 
 
 
  } 
   prev=cur; 
   cur=cur->next; 
   }//while 
 return false;//ra is NOT available; 
} 
 
bool Heap::markUnAccessable(long ra){ 
 //set leaky of a chunk to true. this chunk will not be accessed 
      chunkPtrType cur=Head; 
   while (cur!=NULL) { 
  if (cur->ra ==ra) { 
     //passed ra must be to already allocated chunk 
           cur->leaky=true; 
     return true; 
  } 
   cur=cur->next; 
   }//while 
 return false;//ra is NOT available; 
long Heap::getMemRefToFree() { 
 //returns a reference to an allocated NOT leaky chunk; 
    chunkPtrType cur=Head; 
   long r,x=0; 
   while (cur!=NULL) {//x counts the no of not leaky and allocated 
      // can be accessed 
    if ((!cur->leaky) && (cur->chunkIsAllocated))  {  
     // allocated and NOT leaky can be choosed   
     ++x; 
    }//if  
   cur=cur->next; 
   }//while 
 
   if (x>0) {  
     r= rand () % x +1;   
     // selecet random object allocated and Not Leaked 
       
     cur=Head; 
    
     long i=0; 
     while (cur!=NULL) { 
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      if ((!cur->leaky) && (cur->chunkIsAllocated))       
 // allocated and NOT leaky can be choosed   
    ++i; 
    if (i==r) { //choosed object 
       //return ref to any part of object 
       return cur->memRef + rand()%cur-
>chunkSize; 
    }//if 
   }//if  
    cur=cur->next; 
  }//while 
   }//if x>0 there is not leaky and allocated chunk can be returnd 
 
 return -1;//no MemRef available to be freed 
 
}//getMemRefToFree 
 
long Heap::getMemRefToAcess(float locality,long prevRef) { 
  double r; 
  r=getRandomProp(); 
  if ((r<=locality) && (prevRef !=-1)) { 
   //look up the next closest, to prevRef, allocated chunk Not Leaky 
and return it 
  chunkPtrType cur=Head; 
   while ((cur!=NULL)&&(cur->memRef <=prevRef)) {//move to 
location of prevRef 
   cur= cur->next; 
  }//while 
  while (cur!=NULL){ 
    if ((!cur->leaky) && (cur->chunkIsAllocated))  {  
     // allocated and NOT leaky can be choosed   
     //return a memRef to any part of the object 
     return cur->memRef + rand()%cur->chunkSize; 
    }//if  
    cur=cur->next; 
  }//while  
  }//if  
       
 //The next line is reached if r > locality 
  //return random memRef from Heap 
    //The next block gurantee to return a random memRef to allocated not leaky 
chunk    
  
   return getMemRefToFree(); 
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}//getMemRefToAccess 
 
void Heap::coalesce (chunkPtrType cur) { 
   chunkPtrType pr, nx; 
   pr=NULL;//assume initially no previous 
   nx=NULL;//assume initially no next 
 
   if ((cur->previous  != NULL) && (!cur->previous->chunkIsAllocated)) { 
  pr = cur->previous;// there is a previous free chunk 
 } 
   if ((cur->next != NULL) && (!cur->next->chunkIsAllocated)) { 
  nx = cur->next;// there is a next free chunk 
 } 
    
   if ((pr == NULL ) && (nx ==NULL)) return;//This is a stand alone free chunk 
 
   if  ((pr !=NULL ) && (nx!=NULL)){//Preceeded by free chunk and followed by 
free chunk 
     pr->chunkSize += cur->chunkSize + nx->chunkSize; 
  pr->next=nx->next; 
  if (nx->next !=NULL) { nx->next->previous =pr;} 
  nx->next = NULL; 
  nx->previous=NULL; 
  delete nx; 
  nx=NULL; 
 
  } 
   else if ((pr !=NULL ) && (nx==NULL)) {//preceeded by Free chunk 
   nx=cur->next; 
   pr->chunkSize += cur->chunkSize; 
   pr->next=nx; 
   if (nx!=NULL) { cur->next->previous =pr;} 
 
   }else if ((pr ==NULL ) && (nx!=NULL )){//Followed by free chunk 
    pr=cur; 
    cur=pr->next; 
    nx=cur->next; 
    pr->chunkSize += cur->chunkSize; 
    pr->next=nx; 
    if (nx!=NULL) { cur->next->previous =pr;} 
  } 
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 //delete node pointed to by cur 
 cur->next=NULL; 
 cur->previous=NULL; 
 delete cur; 
 cur=NULL; 
 return; 
 
}//merge adjacent free chunks 
 
void Heap::dumpHeap (long processID, ofstream &dumpFile) { 
 dumpFile <<"\nHeap DUMP for processID: " <<processID<<endl; 
 dumpFile <<"Heap Max Size(Byte): " <<getHeapMaxSize() <<endl; 
 dumpFile <<"Heap Allocated size(Byte): " <<getHeapAllocatedSize() 
<<endl; 
 dumpFile <<"# Heap Allocated Objects: "<< getHeapAllocatedObjects () 
<<endl; 
 dumpFile <<"Leaked Size(Byte): " <<getHeapLeakedSize() <<endl; 
 dumpFile <<"#Leaked Objects: " << getHeapLeakedObjects()<<endl; 
 
 dumpFile<<setw(12)<<"MemRef"<<setw(12)<<"ra"<<setw(12)<<"Size"<<
setw(8)<<"Status"  
  <<setw(12)<< "Lk_Sts" 
  <<setw(12)<<"Prev"<< setw(12)<<"Next"<<endl; 
 int i=0; 
 for (chunkPtrType cur=Head; cur!=NULL; cur =cur->next) { 
   dumpFile<<setw(12)<<cur->memRef 
    <<setw(12)<<cur->ra 
    <<setw(12)<<cur->chunkSize <<setw(8); 
    if (cur->chunkIsAllocated ) { 
     dumpFile <<"Active"; 
    }else { dumpFile <<"Free"; } 
   dumpFile <<setw(12); 
   if (cur->leaky) { 
    dumpFile<<"lky"; 
   }else { dumpFile <<"NotLky";} 
         dumpFile <<setw(12); 
; 
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   if (cur->previous ==NULL ) { 
    dumpFile<<"NULL"; 
   }else { dumpFile <<cur->previous->memRef;} 
    dumpFile <<setw(12); 
   if (cur->next  ==NULL ) { 
    dumpFile<<"NULL\n"; 
   }else { dumpFile <<cur->next->memRef <<endl;} 
 i++; 
 //if (i%5==0){break;}//donot perform complete dump 
 }//for 
 dumpFile <<"--------------------------------------------------------------------"; 
double Heap::getRandomProp() { 
    double r; 
 r= rand() % PRECISION; 
 r/=PRECISION; 
 return r; 
} 
PTable.h 

#include <fstream.h> 
#include <assert.h> 
 
#ifndef PTABLE_H 
#define PTABLE_H 
 
class PTABLE { 
 
 public: PTABLE(int);//constructor 
  ~PTABLE();//destructor 
  long getNoOfPages () { return noOfPages; } 
  long getPageSize  () { return pageSize;} 
  long getProcessSize(){ return processSize;} 
  long getPtableTimeStamp(long pRef) { return 
myPtableTimeStamp[pRef];} 
  bool incrementSize (int chunkSize); 
  bool pageRefInRAM (long pageRef); 
  bool isDirty      (long pRef) {return myPtableDB[pRef];} 
  bool isPotLeak    (long pRef) {return myPtablePL[pRef];} 
  void setDiryBit   (long pRef,bool status) {myPtableDB[pRef]=status;} 
   void dumpPTABLE(long processID, ofstream &); 
  void setPtableFrameRef (long pRef,long frameIndex) { 
myPtableFrameRef[pRef]=frameIndex;} 
  void setPtablePB(long pRef, bool status) 
{myPtablePB[pRef]=status;} 
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  void setPtablePL(long pRef, bool status) 
{myPtablePL[pRef]=status;} 
  void setPtableTimeStamp(long pRef, long timeStamp) 
{myPtableTimeStamp[pRef]=timeStamp;} 
 
  void setPtableLRUtimeStamp(long pRef,long 
timeStamp){myPtableLRUtimeStamp[pRef]=timeStamp;} 
  long getPtableLRUtimeStamp(long pRef){return 
myPtableLRUtimeStamp[pRef];} 
 
  void setPtableOnSwapSpc(long pRef, bool status) 
{myPtableOnSwapSpc[pRef]=status;} 
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 private: 
        
  long noOfPages; 
  int  pageSize; 
  long processSize; 
  long * myPtableFrameRef; 
  bool * myPtablePB; 
  bool * myPtableOnSwapSpc; // 1 page on swap space; 0 NOT 
  bool * myPtableDB; 
  bool * myPtablePL;//potential Leak flag 
  long * myPtableTimeStamp; 
  long * myPtableLRUtimeStamp; 
  bool firstVisit;//first visit to increment pagetable 
 };//end class 
#endif 
PTable.cpp 

#include "PTABLE.h" 
#include <iostream.h> 
#include <iomanip.h> 
#include <math.h> 
#include <stdlib.h> 
 
PTABLE::PTABLE(int pSize) :pageSize(pSize) 
{   
 noOfPages=0;//no pages in current page table yet 
 processSize =0;//initialy the size of the heap of process is zero 
 cout <<"pagetab ins: "<<noOfPages<<endl; 
 myPtableFrameRef = NULL; 
 myPtablePB       = NULL; 
 myPtableOnSwapSpc= NULL; 
 myPtableDB   = NULL; 
 myPtablePL   = NULL; 
 myPtableTimeStamp= NULL; 
 myPtableLRUtimeStamp=NULL; 
    firstVisit=true;//mark to indicate first visit to increment function 
PTABLE:: ~PTABLE() {} 
bool PTABLE::pageRefInRAM (long pageRef){ 
 return (myPtablePB[pageRef]); 
bool PTABLE::incrementSize (int chunkSize){ 
 if (firstVisit) {//create first entry 
  firstVisit=false; 
  myPtableFrameRef = new long [noOfPages+1]; 
  assert(myPtableFrameRef !=NULL); 
  myPtablePB       = new bool [noOfPages+1]; 
  assert(myPtablePB       !=NULL); 
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  myPtableOnSwapSpc= new bool [noOfPages+1]; 
  assert(myPtableOnSwapSpc!=NULL); 
  myPtableDB       = new bool [noOfPages+1]; 
  assert(myPtableDB       !=NULL); 
  myPtablePL       = new bool [noOfPages+1]; 
  assert(myPtablePL       !=NULL); 
  myPtableTimeStamp= new long [noOfPages+1]; 
  assert(myPtableTimeStamp!=NULL); 
  myPtableLRUtimeStamp=new long[noOfPages+1]; 
  assert(myPtableLRUtimeStamp!=NULL); 
 
  myPtableFrameRef [noOfPages]= 0; 
  myPtablePB       [noOfPages]= false; 
  myPtableOnSwapSpc[noOfPages]= false; 
  myPtableDB       [noOfPages]= false;//initially not dirty 
  myPtablePL       [noOfPages]= false; 
  myPtableTimeStamp[noOfPages]= 0; 
        myPtableLRUtimeStamp[noOfPages]=0; 
   
  noOfPages++;//first page is added 
 }//if 
 
 //increment processSize 
 processSize += chunkSize; 
 
 long newSizeInPages = (long) 
ceil(static_cast<double>((double)processSize/(pageSize*1024))); 
 if (newSizeInPages == noOfPages) {//no need to exted ptable. Space is 
already available 
  return true; 
 }//if 
  
 //extend page table by (newSizeInPages - noOfPages ) pages 
 //save pointers  
 
 long * mPFR   = myPtableFrameRef; 
 bool * mPPB   = myPtablePB; 
 bool * mOSwS  = myPtableOnSwapSpc; 
 bool * mDB    = myPtableDB; 
 bool * mPL    = myPtablePL; 
 long * mTimeStamp=myPtableTimeStamp; 
 long * mPtableLRUtimeStamp= myPtableLRUtimeStamp; 
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    //allocate the required new size 
 myPtableFrameRef = new long [newSizeInPages]; 
 assert(myPtableFrameRef !=NULL); 
 myPtablePB       = new bool [newSizeInPages]; 
 assert(myPtablePB       !=NULL); 
 myPtableOnSwapSpc= new bool [newSizeInPages]; 
 assert(myPtableOnSwapSpc!=NULL); 
 myPtableDB       = new bool [newSizeInPages]; 
 assert(myPtableDB       !=NULL); 
 myPtablePL       = new bool [newSizeInPages]; 
 assert(myPtablePL       !=NULL); 
 myPtableTimeStamp= new long [newSizeInPages]; 
 assert(myPtableTimeStamp!=NULL); 
 myPtableLRUtimeStamp=new long[newSizeInPages]; 
 assert(myPtableLRUtimeStamp!=NULL); 
 
 for (long i=0; i<noOfPages; i++ ) {//copy old to new 
  myPtableFrameRef [i]= mPFR[i]; 
  myPtablePB       [i]= mPPB[i]; 
  myPtableOnSwapSpc[i]= mOSwS[i]; 
  myPtableDB       [i]= mDB[i]; 
  myPtablePL       [i]= mPL[i]; 
  myPtableTimeStamp[i]= mTimeStamp[i]; 
  myPtableLRUtimeStamp[i]= mPtableLRUtimeStamp[i]; 
 } 
 //initialize extended pages 
 for (long x=noOfPages; x< newSizeInPages; x++) { 
  myPtableFrameRef [x]= 0; 
  myPtablePB       [x]= false; 
  myPtableOnSwapSpc[x]= false; 
  myPtableDB       [x]= false;//extended area not dirty yet 
  myPtablePL       [x]= false; 
  myPtableTimeStamp[x]= 0; 
  myPtableLRUtimeStamp[x]=0; 
 } 
 
 //delete old copy to save space in Vir. Add. Space 
 delete [] mPFR; 
 delete [] mPPB; 
 delete [] mOSwS; 
 delete [] mDB; 
 delete [] mPL; 
 delete [] mTimeStamp; 
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 // set # of pages to new value 
 noOfPages = newSizeInPages; 
 return true; 
}void PTABLE::dumpPTABLE (long processID, ofstream & dumpFile) { 
 dumpFile <<endl <<"....Page Table DUMP.... for process: " <<processID 
<<endl; 
 dumpFile <<setw(20) <<"# of pages   : " <<setw(15)<<noOfPages <<endl; 
 dumpFile <<setw(20) <<"Page Size(KB): " <<setw(15)<<pageSize   
<<endl; 
 dumpFile <<setw(20) <<"Process Size(Byte): " 
<<setw(15)<<processSize<<endl; 
 
 dumpFile <<setw(15) <<"Page Index"  
  <<setw(15)<<"FrameRef"  
  <<setw(15)<<"Status" 
  <<setw(10)<<"OnSwapSpc" 
  <<setw(10)<<"DirtyBit" 
  <<setw(10)<<"PotLeak" 
  <<setw(10)<<"TimeStamp" 
  <<setw(10)<<"LRUtime" 
  <<endl; 
 
 for (int i=0;i<noOfPages;i++) { 
  dumpFile <<setw(15)  
  <<i 
  <<setw(15)<<myPtableFrameRef[i] 
  <<setw(15)<<myPtablePB[i] 
  <<setw(10)<<myPtableOnSwapSpc[i] 
  <<setw(10)<<((myPtableDB[i]==1)?"W":"R") 
  <<setw(10)<<myPtablePL[i] 
  <<setw(10)<<myPtableTimeStamp[i] 
  <<setw(10)<<myPtableLRUtimeStamp[i] 
  <<endl; 
  //if (i%5==0){break;}//donot perform complete dump 
 }//for 
} 
MallocTable.h 

#include <fstream.h> 
 
#ifndef MALLOCTABLE_H 
#define MALLOCTABLE_H 
 
struct memChunk; 
typedef memChunk * chunkPtrType; 
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class MallocTable { 
 
 public: MallocTable();//constructor 
  ~MallocTable();//destructor 
  bool removeFromMallocTable(long ra);//remove a  chunk from 
MallocTable 
  bool addToMallocTable(long ra,long inputMemRef, long 
inputSize,bool leakyflag);  
  void dumpMallocTable(long processID, ofstream &outputFile); 
  long countLeaky(long &size); 
  long countUnLeaky(long &size); 
  void getUnreachableMemRefs(long page, long pageSize, long & 
noOfRefs,long unReachable[]); 
  bool markUnReachable(long ra); 
 private: 
 
  chunkPtrType Head, Tail; 
        long objectsCreated, sizeObjectsCreated; 
  long objectsRemoved, sizeObjectsRemoved; 
 
};//end class 
#endif 
MallocTable.cpp 

#include "MallocTable.h" 
 
#include <iostream.h> 
#include <iomanip.h> 
#include <assert.h> 
#include <stdlib.h> 
 
const int PRECISION=10000;//Four digits precision //used in getRandomProb() 
 
struct memChunk { 
 chunkPtrType previous; 
 long ra; 
 long memRef; 
 long chunkSize; 
 bool leaky;//true leaky chunk; false NOT leaky 
 chunkPtrType next; 
}; 
 
MallocTable:: MallocTable() { 
 Head=Tail=NULL; 
 objectsCreated    = 0; 
 sizeObjectsCreated= 0; 
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 objectsRemoved    = 0; 
 sizeObjectsRemoved= 0; 
} 
MallocTable::~MallocTable() { } 
 
void MallocTable::dumpMallocTable (long processID, ofstream &dumpFile) { 
 long size1=0, size2=0; 
 dumpFile <<"\nMallocTable DUMP for processID: " <<processID<<endl; 
 dumpFile <<"Leak objects  : " <<countLeaky(size1) << " Unleaky     : " 
<<countUnLeaky(size2) <<endl; 
 dumpFile <<"Leak objs Size: " <<size1             << " Unleaky size: " 
<<size2               <<endl; 
 dumpFile <<"objectsCreated: " <<objectsCreated << " 
sizeObjectsCreated: " <<sizeObjectsCreated <<endl; 
 dumpFile <<"objectsRemoved: " <<objectsRemoved << " 
sizeObjectsRemoved: " <<sizeObjectsRemoved <<endl; 
 
 dumpFile<<setw(12)<<"MemRef" 
  <<setw(12)<<"ra" 
  <<setw(12)<<"Size" 
  <<setw(12)<< "Lk_Sts" 
  <<setw(12)<<"Prev"<< setw(12)<<"Next"<<endl; 
 int i=0; 
 for (chunkPtrType cur=Head; cur!=NULL; cur =cur->next) { 
   dumpFile<<setw(12)<<cur->memRef 
    <<setw(12)<<cur->ra 
    <<setw(12)<<cur->chunkSize; 
    dumpFile <<setw(12); 
   if (cur->leaky) { 
    dumpFile<<"lky"; 
   }else { dumpFile <<"NotLky";} 
          
   dumpFile <<setw(12); 
   if (cur->previous ==NULL ) { 
    dumpFile<<"NULL"; 
   }else { dumpFile <<cur->previous->memRef;} 
    dumpFile <<setw(12); 
   if (cur->next  ==NULL ) { 
    dumpFile<<"NULL\n"; 
   }else { dumpFile <<cur->next->memRef <<endl;} 
   i++; 
   if (i%5==0){break;}//donot perform complete dump 
 }//for 
 dumpFile <<"--------------------------------------------------------------------"; 
  



www.manaraa.com

168 

 

long MallocTable::countLeaky(long & size) { 
 long cnt=0; 
        chunkPtrType  cur=Head; 
  while (cur!=NULL) { 
    
  if (cur->leaky ) {cnt++; size += cur->chunkSize;} 
   cur = cur->next;  
  
      
  }//while 
 return cnt; 
bool MallocTable::markUnReachable(long ra){ 
 //mark a chunk as un reachable it can be freed by MLD 
 //pass an ra to available chunck 
        chunkPtrType  cur=Head; 
  while (cur!=NULL) { 
    
   if ( cur->ra == ra ) { 
     cur->leaky=true;  
     return true; 
   } 
   cur = cur->next;  
  }//while 
 return false;//must not be reached 
void MallocTable::getUnreachableMemRefs(long page, long pageSize, long & 
noOfRefs,long unReachable[]) { 
 long lowRef = page * pageSize * 1024; // low memref to look at 
 long highRef= lowRef + pageSize *1024 -1; // high ref 
    noOfRefs=0; 
 
 chunkPtrType  cur=Head; 
 while (cur!=NULL) { 
  if (cur->memRef < lowRef) { cur= cur->next; continue;} 
  if (cur->memRef > highRef){ break;}//finish searching 
  // the following memory refrences are in page 
  if (cur->leaky ) { 
   //this chunk is unreachable and in aged page 
   unReachable[noOfRefs]= cur->ra; 
   noOfRefs++; 
  } 
 cur = cur->next;  
 }//while 
long MallocTable::countUnLeaky(long & size) { 
 long cnt=0; 
        chunkPtrType  cur=Head; 
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  while (cur!=NULL) { 
    
  if (!(cur->leaky )) {cnt++; size +=cur->chunkSize;} 
    
  cur = cur->next;  
       
  }//while 
 return cnt; 
} 
bool MallocTable::addToMallocTable(long ra,long inputMemRef, long inputSize, 
bool leakyflag) { 
  objectsCreated++; sizeObjectsCreated +=inputSize; 
 
 chunkPtrType temp,prev, cur; 
  
 cur=Head; 
 prev=NULL; 
 
 if (Head == NULL) { 
   //first item in mallocTable 
   temp = new memChunk; 
   assert(temp!=NULL); 
   temp->previous = NULL; 
   temp->ra       = ra; 
   temp->memRef   = inputMemRef; 
   temp->chunkSize= inputSize; 
   temp->leaky    = leakyflag; 
   temp->next     = NULL; 
   Head           = temp; 
   Tail           = temp; 
   return true; 
    
 }  
 while (cur!=NULL) { 
  //find a place to insert chunk sorted 
  if (cur->memRef >= inputMemRef) {break;} 
   
   prev= cur; 
   cur = cur->next;  
  
      
 }//while 
 if (cur==Head) { 
    // add as the first item to mallocTable 
   temp = new memChunk; 
   assert (temp!=NULL);  
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   temp->previous = NULL; 
   temp->next     = cur; 
   temp->memRef   = inputMemRef; 
   temp->ra       = ra; 
   temp->chunkSize= inputSize; 
   temp->leaky    = leakyflag; 
   cur->previous = temp; 
   Head=temp; 
   return true; 
  } 
 if (cur ==NULL) { 
    // add as the last  item to mallocTable 
   temp = new memChunk; 
   assert (temp!=NULL); 
   temp->previous = prev; 
   temp->next     = NULL; 
   temp->ra       = ra; 
   temp->memRef   = inputMemRef; 
   temp->chunkSize= inputSize; 
   temp->leaky    = leakyflag; 
   prev->next     = temp; 
   Tail=temp; 
   return true; 
  } 
 // add between prev and cur 
   temp = new memChunk; 
   assert (temp!=NULL); 
   temp->previous = prev; 
   temp->next     = cur; 
   prev->next     = temp; 
   cur ->previous = temp; 
   temp->memRef   = inputMemRef; 
   temp->ra       = ra; 
   temp->chunkSize= inputSize; 
   temp->leaky    = leakyflag; 
   return true; 
} 
 
bool MallocTable::removeFromMallocTable(long ra){ 
      objectsRemoved++; 
      chunkPtrType prev, cur=Head; 
   while (cur!=NULL) { 
  if (cur->ra ==ra) { 
   if (Head == Tail){ 
    //removing the only available element 
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    Head->next = NULL; 
    Head->previous=NULL; 
    sizeObjectsRemoved +=Head->chunkSize; 
    delete Head; 
    Head=NULL; 
    Tail=NULL; 
    return true; 
   }// 
   if (cur==Head) { 
    //removing first element 
    Head = Head->next; 
    Head->previous = NULL; 
                cur->next = NULL; 
    cur->previous=NULL; 
    sizeObjectsRemoved +=cur->chunkSize; 
    delete cur; 
    cur=NULL; 
    return true; 
     
   } else if (cur==Tail) { 
    //removing last element 
    sizeObjectsRemoved +=Tail->chunkSize; 
    Tail = Tail->previous; 
    Tail->next = NULL; 
                cur->next = NULL; 
    cur->previous=NULL; 
    delete cur; 
    cur=NULL; 
    return true; 
   } else { 
    // removing item in the middle 
    sizeObjectsRemoved +=cur->chunkSize; 
    prev->next = cur->next; 
    cur->next->previous  = prev; 
    cur->previous=NULL; 
    cur->next    =NULL; 
    delete cur; 
    cur=NULL; 
    return true; 
 
   } 
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  }//if 
   prev=cur; 
   cur=cur->next; 
   }//while 
 return false;//MemRef is NOT available; 
} 
RAM.h 

#include <fstream.h> 
 
#ifndef RAM_H 
#define RAM_H 
 
class RAM { 
 
 public: RAM(long, int);//constructor 
  ~RAM();//destructor 
  long getMaxSize () { return RAMMaxSize;} 
  long getNoOfFrames() {return noOfFrames;} 
  long getPageSize()   {return pageSize;} 
  long getRAMProcess(long frameIndex) {return 
myRAMProcesses[frameIndex];} 
  bool getRAMStatus (long frameIndex) {return 
myRAMStatus[frameIndex];} 
  long getRAMPageRefs(long frameIndex){return 
myRAMPageRefs[frameIndex];} 
  bool existsFreeFrame (long & frameIndex); 
  void setRAMPageRefs (long frameIndex, long pRef) { 
myRAMPageRefs[frameIndex]=pRef;} 
  void setRAMProcesses(long frameIndex, long proc) { 
myRAMProcesses[frameIndex]=proc;} 
  void setRAMStatus   (long frameIndex, bool status){ 
myRAMStatus[frameIndex]=status;} 
        void dumpRAM(ofstream &); 
 private: 
 
  long RAMMaxSize; // in KB, max size of the Heap 
  long noOfFrames; 
  int  pageSize;//in KB 
        long * myRAMPageRefs; 
  long * myRAMProcesses; 
  bool * myRAMStatus; 
};//end class 
#endif 
RAM.cpp 

#include "RAM.h" 
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#include <iostream.h> 
#include <iomanip.h> 
 
const int RAM_ATT=3;//#columns in the Ram 
 
 
RAM::RAM(long maxSize, int pSize) :pageSize(pSize) 
{  RAMMaxSize = maxSize; 
  noOfFrames = RAMMaxSize/pageSize; 
        myRAMPageRefs = new long [noOfFrames]; 
  myRAMProcesses= new long [noOfFrames]; 
  myRAMStatus   = new bool [noOfFrames]; 
        
 
  //initialize RAM  
  for (int i=0;i<noOfFrames;i++) { 
   myRAMPageRefs [i]=0; 
   myRAMProcesses[i]=0; 
   myRAMStatus   [i]=false; 
  } 
} 
 
RAM:: ~RAM() {}//Should be implemented to free the RAM and return it to 
memory 
     // otherwise a leak will occur 
bool RAM::existsFreeFrame (long & frameIndex) { 
 bool res=false; 
 for (int i=0;i<noOfFrames;i++) 
  if  (!myRAMStatus[i]) { 
   // frame is free 
   res=true; 
   frameIndex=i;//returns the index of free frame 
   break; 
  } 
 return res; 
} 
 
void RAM::dumpRAM (ofstream & dumpFile) { 
    dumpFile <<endl <<"....RAM DUMP...."<<endl; 
 dumpFile <<setw(20) <<"Max Size (KB): " <<setw(15)<<RAMMaxSize 
<<endl; 
 dumpFile <<setw(20) <<"# of Frames  : " <<setw(15)<<noOfFrames 
<<endl; 
 dumpFile <<setw(20) <<"Page Size(KB): " <<setw(15)<<pageSize   
<<endl; 
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 dumpFile <<setw(15) <<"Frame Index" <<setw(15) <<"PageRef" 
<<setw(15)<<"Process"<<setw(15)<<"Status"<<endl; 
 
 for (int i=0;i<noOfFrames;i++) { 
  dumpFile <<setw(15)  
  <<i 
  <<setw(15)  
  <<myRAMPageRefs [i] 
  <<setw(15) 
  <<myRAMProcesses[i] 
  <<setw(15) 
  <<myRAMStatus   [i] 
  <<endl; 
  if (i%5==0){break;}//donot perform complete dump 
 }//for 
}//dumpRAM 
mainSimProg.cpp 

#include "Heap.h" 
#include "RAM.h" 
#include "PTABLE.h" 
#include "MallocTable.h" 
 
#include <iostream.h> 
 
#include <fstream.h> 
#include <stdlib.h> 
#include <iomanip.h> 
#include <time.h> 
#include <math.h> 
 
const int MAXPROCESSES=20; //Maximum number of processes 
const int PR_ATT=12; //Process attributes 
const int PRECISION=10000;//Four digits precision //used in getRandomProb() 
 
long simTime=0;//Counter of simulation steps; represents time 
int pageSize;//page size in KB 
int nOfProcesses;//number of processes 
long maxRAMSize;//Maximum RAM Size 
int nOfFrames;// number of frames =maxRAMSize/pageSize  
long maxSimSteps; //maximum number of memory refrences at which simulation 
unsigned int seed; //seed value for random function 
    // will stop this counter is esentially represents time 
float localityOfRef;//locality of reference. How much likely a process is going to 
     // to reference the same page next. 
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float propOfReferencingMem; 
int   generateDumpFileFlag;// 1 generate dump file 0: DO NOT generate a file 
 
long  memRefrenceToAccess; 
long  TimePassBeforeWriteToStatVsTimeFile; 
long  max_Heap_Size; 
 
char trans; //+ allocate - deallocate 
long ra;    //return address 
 
enum {HEAPTHRESHOLD, NO_MALLOCS, NO_REFS, 
NO_MARKED_UNACCESSABLE, LAST_ACCESSED_REF, 
 NO_HITS, NO_FAULTS, FALSEPOSITIVES, PAGEOUTS, AGECNT, 
AGEAVG, 
 USE_AGING_FLAG, PAGEAGEMUL, OVERHEAD}; 
 
double processes[MAXPROCESSES][PR_ATT]; 
//Array of Processes 
//   index HEAPTHRESHOLD HEAPTHRESHOLD, if max heap size 
>HEAPTHRESHOLD page is aged 
//    INDEX NO_MALLOCS    How many times malloc is called 
//    index NO_REFS       how many times memory refrences are made 
//    index NO_MARKED_UNACCESSABLE      how many chunks marked 
unAccessable  
          //will not be 
selected to be accessed 
//    index LAST_ACCESSED_REF  Last reference accessed by a process 
//    index NO_HITS      number of page hits; page found in RAM When requested 
//    index NO_FAULTS    number of page faults 
//    index FALSEPOSITIVES  // number of false positives for a process 
//    index PAGEOUTS        // number of page outs;//if DB is set we need to page-
out the page 
//    index AGECNT          // number of pages of Pot. Leak included in computing 
the average 
//   index AGEAVG      // the average age for pages marked with 
Pot Leak flag 
//    index USE_AGING_FLAG  // if set the process will use aging alg. Else NOT 
//    index PAGEAGEMUL      // PAGE AGE MULTIPLIER 
//    index OVERHEAD        //Overhead associated with calling Sweeper() 
Heap *Heaps[MAXPROCESSES];//Heaps[0] the heap for process zero 
       //Heaps[1] the heap for process one 
and so on. 
PTABLE* pageTable[MAXPROCESSES];// pageTable[0] the page table for 
process 0 
         //  pageTable[1] the 
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 page table for process 1 and so on 
MallocTable* mallocTable[MAXPROCESSES];//mallocTable[0] mallocTable for 
process 0 
            //mallocTable[1] 
mallocTable for process 1 
RAM  *ram; 
 
 
void initialize(); 
void readInputFile(ofstream&); 
void recordStatVsTime(int p,long SimTime,ofstream &StatVsTime); 
void recordStatVsTimeHeader(ofstream &StatVsTime); 
void dumpProcessesStat(); 
 
double getRandomProp(); 
void createDumpFile(int); 
void performMemAccess( int ); 
long getMemRef(int p, float localityOfRef, long prevRef); 
long getRandomVictimPage(long &victimPageProcess,long &frame); 
void removeUnReachableObjectsForAgingPages(int pCnt,long simTime);  
 
long getLRUvictimPage(long &,long &); 
 
void setDirtyBit(int pCnt,long pageRef); 
void swapPages( long victimPageProcess,long victimPage, 
       long frame, int pCnt,long pageRef, long simTime) ; 
 
long AgedPages=0; 
 
int main () { 
 initialize(); 
 srand(seed); 
    long memAllocRef; 
 bool proceed=true; 
 int  chunkSize; 
 double r; 
  
  ofstream StatVsTime ("StatVsTime.dat",ios::out);//Store Stat Vs Time 
 if (!StatVsTime){ 
  cerr << "File StatVsTime.dat could not be created"; 
  exit(1); 
 } 
 ifstream traceFile ("tracefilesequal/trace10000Pm50_50_85_10_5",ios::in); 
 if (!traceFile) {cerr<<"Can not open trace file\n";exit(3);} 
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 recordStatVsTimeHeader(StatVsTime); 
 //simulation loops until there are no more trace data 
     
 while(proceed) { 
   simTime++; 
   for (int p=0; p<nOfProcesses; p++) { 
    r = getRandomProp(); 
    if (r<= propOfReferencingMem ) { 
     performMemAccess(p); 
    } else {//call malloc function 
    proceed=false; 
    if (traceFile>>trans>>ra>>chunkSize) { 
     proceed=true; 
    } 
                if (proceed==false) {break;} 
    if (trans=='+') {//perform allocation 
      processes[p][NO_MALLOCS]++; 
      //created chuncks assumed not leaky until they 
reach the place of free 
      memAllocRef= Heaps[p]->myMalloc 
(ra,chunkSize,false); 
      //record this allocation in mallocTable ; on 
malloctable also they are not leaky 
      mallocTable[p]-
>addToMallocTable(ra,memAllocRef,chunkSize,false); 
      //increase the size of page table by chunkSize if 
needed 
      pageTable[p]->incrementSize (chunkSize); 
    } else {// trans='-' call free() function 
      //here set leaky to true on Heap and 
malloctable.actual freeing is left 
      //for the aging algorithm 
      processes[p][NO_MARKED_UNACCESSABLE]++;  
    //  Heaps[p]->myFree (ra);// 
      bool y= Heaps[p]->markUnAccessable(ra); 
      //The object freed from heap is removed from 
MallocTable 
      // mallocTable[p]->removeFromMallocTable(ra); 
      y=mallocTable[p]->markUnReachable(ra); 
      
    }//if  
    
    }//if r<propMemRef 
   //here, we may record statistics from heap statistics VS simTime   
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   if (simTime%TimePassBeforeWriteToStatVsTimeFile  ==0) { 
      recordStatVsTime(p, simTime,StatVsTime); 
       cout <<simTime <<endl; 
   }//if 
   }//for 
  // if (simTime==10) {break;} 
 }//while 
    cout <<"\nAged Pages: "<< AgedPages<<endl; 
 dumpProcessesStat(); 
     
 createDumpFile(generateDumpFileFlag); 
    
return 0;//program ends normally 
}//main 
 
void performMemAccess (int p) { 
 
 long memRefToAccess, pRef,victimPageProcess,victimPage,frame; 
 processes[p][NO_REFS]++; 
 //generate a reference to a Live memory location to be accessed 
 processes[p][LAST_ACCESSED_REF]= memRefToAccess= 
   getMemRef(p, localityOfRef,(long) 
processes[p][LAST_ACCESSED_REF]); 
 //Address resolution. Convert memRef into virtual page index (pRef) 
 if (memRefToAccess>0) { 
  pRef = (long) 
ceil(static_cast<double>((double)memRefToAccess/(pageSize*1024)))-1;} 
if (pRef >0) {//A valid page refernce  
 setDirtyBit(p,pRef);//update pagetable to reflect the randomly  
      //generated dirtyFlag. 
      //we need to indicate whether this is a 
Read or Write access 
 
 if (pageTable[p]->pageRefInRAM (pRef)) { 
  //page is in RAM use it // a page hit occured 
  processes[p][NO_HITS]++;  
  //time stamp page being accessed for LRU algorithm 
  pageTable[p]->setPtableLRUtimeStamp(pRef,simTime); 
 } else { 
  //page fault occured  
  processes[p][NO_FAULTS]++;  
  //add outgoing page to swap space of proces if it is not already 
there //call by ref 
  //rese time stamp.................. 
  long frameIndex; 
  if (ram->existsFreeFrame (frameIndex)) {  
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   //use it  
   //cout <<"empty frame: "<<frameIndex <<endl; 
   ram->setRAMPageRefs(frameIndex,pRef); 
   ram->setRAMProcesses(frameIndex,p); 
   ram->setRAMStatus(frameIndex,true);//occupied by pRef of 
process p 
   //place frameIndex in page table 
   pageTable[p]->setPtableFrameRef(pRef,frameIndex); 
   //Page is now available in page table*/ 
   pageTable[p]->setPtablePB(pRef,true); 
         //time stamp page being accessed for LRU algorithm 
      pageTable[p]->setPtableLRUtimeStamp(pRef,simTime); 
  }else { 
       //Choose a victim page using LRU selection algorithm 
    //Global replacement strategy is used 
       //victimPage 
=getRandomVictimPage(victimPageProcess,frame); 
    victimPage 
=getLRUvictimPage(victimPageProcess,frame); 
                //cout <<"vicPage: "<<victimPage<<" Frame: "<<frame <<endl; 
    if (pageTable[victimPageProcess]-
>isDirty(victimPage)) {//dirty page 
     //increment page outs per process 
    
 ++processes[victimPageProcess][PAGEOUTS]; 
     //write to disk if dirty 
    }//if 
   
 swapPages(victimPageProcess,victimPage,frame,p,pRef,simTime);  
   
    if ((processes[p][USE_AGING_FLAG]==1) &&  
  (Heaps[p]->getHeapMaxSize() > 
(processes[p][HEAPTHRESHOLD]*max_Heap_Size))) { 
  //remove unreachable objects 
  removeUnReachableObjectsForAgingPages(p,simTime); 
 }//if 
}//if (pRef>0) 
 
}//performMemAccess 
 void removeUnReachableObjectsForAgingPages(int pCnt,long simTime) { 
 // this function identifies leaky objects  and  
 // remove them from the Heap and MallocTable 
 const long Max =4096;//the max possible references in a page of 4Kb 
 long noOfRefs=0; 
 long unReachable[Max]; 
 long pages;double pageAge;  
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 pages =pageTable[pCnt]->getNoOfPages(); 
 for (int page=0; page<pages; page++ ){ 
  if (pageTable[pCnt]->isPotLeak (page)){ 
    pageAge =simTime - pageTable[pCnt]-
>getPtableTimeStamp(page); 
    //cout <<"simTime:"<<simTime<<" pTs:" 
<<pageTable[pCnt]->getPtableTimeStamp(page)<<" pAge:"<< pageAge<<endl; 
    if ((pageAge >(processes[pCnt][PAGEAGEMUL] * 
processes[pCnt][AGEAVG])) && 
     (processes[pCnt][AGEAVG]>0) ) 
    { 
        ++AgedPages; 
     //find chunks in this page and mark them as 
potential garbage 
                    processes[pCnt][OVERHEAD]++;// inc 
                    pageTable[pCnt]->setPtablePB  (page,false); 
     pageTable[pCnt]->setPtablePL  (page,false); 
     pageTable[pCnt]->setDiryBit(page,false); 
        pageTable[pCnt]-
>setPtableOnSwapSpc(page,false); 
     //UNREACHABLE OBJECTS MUST BE 
FREED FROM 
     //1)HEAP AND 2)MALLOCTABLE 
     //fllowing lines are the Sweeper() 
     noOfRefs=0; 
     mallocTable[pCnt]-
>getUnreachableMemRefs(page,pageSize,noOfRefs,unReachable); 
     for (int i=0;i<noOfRefs;i++) { 
      //remove from malloctable 
      mallocTable[pCnt]-
>removeFromMallocTable(unReachable[i]); 
      //remove from Heap 
      Heaps[pCnt]->myFree(unReachable[i]); 
     }//for 
    }//if 
   }//if  
 }//for int page 
    
}//removeUnReachableObjectsForAgingPages 
  
void swapPages( long victimPageProcess,long victimPage, 
       long frame, int pCnt,long pageRef, long simTime) { 
 //clear presence bit from old page//  
 pageTable[victimPageProcess]->setPtablePB(victimPage,false); 
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 //mark swap-out page as potential leak 
 pageTable[victimPageProcess]->setPtablePL(victimPage,true); 
 pageTable[victimPageProcess]-
>setPtableTimeStamp(victimPage,simTime); 
     
 //load to ram 
 ram->setRAMPageRefs (frame,pageRef);//store page in RAM 
 ram->setRAMProcesses(frame,pCnt); //store to which process 
 ram->setRAMStatus   (frame,true);//mark page in RAM as occupied 
 //update page table to point to new page 
 pageTable[pCnt]->setPtableFrameRef (pageRef,frame);//load new 
pageRef to PT 
 pageTable[pCnt]->setPtablePB(pageRef,true);//Page is now present 
 //time stamp page being accessed for LRU algorithm 
 pageTable[pCnt]->setPtableLRUtimeStamp(pageRef,simTime); 
   
 if (pageTable[pCnt]->isPotLeak (pageRef)) { 
  //include this pageRef in the accumulated Page_Age_Threshold 
 
 processes[pCnt][AGEAVG]=((processes[pCnt][AGECNT]*processes[pCnt]
[AGEAVG]) 
                       + (simTime-pageTable[pCnt]-
>getPtableTimeStamp (pageRef))) 
              
/++processes[pCnt][AGECNT];  
   
 } 
 //clear potential leak flag if page is swapped-in 
 //since we are accessing a pRef; clear PL bit and time stamp 
 pageTable[pCnt]->setPtablePL(pageRef,false); 
 pageTable[pCnt]->setPtableTimeStamp(pageRef,0);//if PL is false no 
meaning of timeStamp;stm. can be removed 
  
}//swapPages 
 
long getMemRef(int p, float localityOfRef, long prevRef) { 
  //This function gets a memory reference to be acccessed 
 
  return Heaps[p]->getMemRefToAcess(localityOfRef,(long) 
processes[p][LAST_ACCESSED_REF]); 
 
}//getMemRef 
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long getLRUvictimPage(long &victimPageProcess,long &frame) { 
  //Global replacement strategy is used 
 //select the page with minimum LRU time 
 //The implementation is not fast/ uses sequential search  
 //but it will NOT affect the result of our simulation 
 long min = 99999999; //initialize to a large number 
 long victim=0; 
 victimPageProcess=ram->getRAMProcess(0);//choose page 0 process 0 
as default 
 
 for (int i=0;i< ram->getNoOfFrames();i++) { 
  if (ram->getRAMStatus(i)) {// this is an occupied frame 
   if ( pageTable[ram->getRAMProcess(i)]-
>getPtableLRUtimeStamp (ram->getRAMPageRefs(i))<min) { 
    min= pageTable[ram->getRAMProcess(i)]-
>getPtableLRUtimeStamp  (ram->getRAMPageRefs(i)); 
    victim=ram->getRAMPageRefs(i); 
    victimPageProcess=ram->getRAMProcess(i); 
    frame=i; 
   } 
  }//if 
 }// 
 
 return victim; 
   
}//getLRUvictimPage 
long getRandomVictimPage(long &victimPageProcess,long &frame) { 
 
 // a frame is selected randomly from the RAM// This implementation is fast 
for our simulation 
 // we could use another replacement strategy like LRU,or LFU 
 long victim=0; 
 long r; 
 r = rand() % ram->getNoOfFrames();// r is a frame index of a choosed 
victim frame 
 
 victim=ram->getRAMPageRefs(r); 
 victimPageProcess=ram->getRAMProcess(r); 
 frame=r; 
 
 return victim; 
 
double getRandomProp() {  
    double r; 
 r= rand() % PRECISION; 
 r/=PRECISION;  
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 return r; 
}void recordStatVsTimeHeader(ofstream &StatVsTime) { 
 StatVsTime<<endl; 
 StatVsTime  
  <<setw(10)<<"Process"  
  <<setw(10)<<"Time" 
  <<setw(15)<<"HEAPTHRESHOLD" 
  <<setw(15)<<"PAGEAGEMUL" 
  <<setw(15)<<"UseAgAlg?" 
 
  <<setw(15)<<"#Mallocs"  
     <<setw(15)<<"#Refs" 
 
  <<setw(15)<<"#MrkUNacc" 
 
  <<setw(15)<<"H_MaxSize" 
 
  <<setw(15)<<"#H_leakedObjs" 
  <<setw(15)<<"#page Hits" 
  <<setw(15)<<"#page Faults" 
  <<setw(15)<<"#FalsePos"  
  <<setw(15)<<"#PageOuts" 
  <<setw(15)<<"#PgsINcInAVG" 
  <<setw(15)<<"Page AVG" 
  <<setw(15)<<"OverHead" 
     <<endl; 
}void recordStatVsTime(int p, long time,ofstream &StatVsTime){ 
 
  StatVsTime 
  <<setw(10)<<p 
  <<setw(10)<<time  
  <<setw(15)<<processes[p][HEAPTHRESHOLD] 
  <<setw(15)<<processes[p][PAGEAGEMUL] 
  <<setw(15)<<processes[p][USE_AGING_FLAG] 
  <<setw(15)<<processes[p][NO_MALLOCS] 
  <<setw(15)<<processes[p][NO_REFS] 
  <<setw(15)<<processes[p][NO_MARKED_UNACCESSABLE] 
  <<setw(15)<<Heaps[p]->getHeapMaxSize () //maxSize 
 
  <<setw(15)<<Heaps[p]->getHeapLeakedObjects () 
 
  <<setw(15)<<processes[p][NO_HITS] 
  <<setw(15)<<processes[p][NO_FAULTS] 
  <<setw(15)<<processes[p][FALSEPOSITIVES] 
  <<setw(15)<<processes[p][PAGEOUTS] 
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  <<setw(15)<<processes[p][AGECNT] 
  <<setw(15)<<processes[p][AGEAVG] 
  <<setw(15)<<processes[p][OVERHEAD] 
 
  <<endl; 
void initialize() { 
 cerr <<"Simulation may take time depending on the input 
parameters.\nPlease wait....\n"; 
 
 ofstream outputFile ("OutputFile.dat",ios::out);//Store Page refrences to a 
file 
 if (!outputFile){ 
  cerr << "File outputFile.dat could not be opened"; 
  exit(1); 
 } 
 
 readInputFile(outputFile);//Reads Simulation parameters 
 srand(seed);//seed random function with time in milliseconds  
void readInputFile(ofstream &outputFile) { 
  ifstream inputFile ("inputFile.dat",ios::in); 
 if (!inputFile){ 
  cerr << "File inputFile.dat could not be opened"; 
  exit(1); 
 } 
   char filler0[25], filler [25],filler1[25],filler3[25],filler4[55],filler5[55],filler7[30]; 
   inputFile >>filler>>seed; 
   outputFile 
<<setprecision(2)<<setiosflags(ios::left|ios::fixed|ios::showpoint)<<setw(20)<<"Se
ed val="<<setw(20)<<seed<<endl; 
   inputFile >>filler>>pageSize; 
   outputFile <<setw(20)<<filler<<setw(20)<<pageSize<<endl; 
   inputFile>>filler>>nOfProcesses; 
   outputFile <<setw(20)<<filler<<setw(20)<<nOfProcesses<<endl; 
   inputFile>>filler>>maxRAMSize; 
   outputFile <<setw(20)<<filler<<setw(20)<<maxRAMSize<<endl; 
   nOfFrames =maxRAMSize/pageSize; 
    outputFile<<setw(20)<<"No of Frames="<<setw(20)<<nOfFrames<<endl; 
 
   inputFile>>filler>>localityOfRef; 
   outputFile <<setw(20)<<filler<<setw(20)<<localityOfRef<<endl; 
 
   inputFile>>filler5>>propOfReferencingMem; 
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   propOfReferencingMem /=100; 
   outputFile <<setw(30)<<filler5<<setw(12)<<propOfReferencingMem<<endl; 
 
    
   inputFile>>filler7>>generateDumpFileFlag; 
   outputFile <<setw(20)<<filler7<<setw(20)<<generateDumpFileFlag<<endl; 
   inputFile>>filler5>>TimePassBeforeWriteToStatVsTimeFile; 
   
outputFile<<setw(36)<<filler5<<setw(7)<<TimePassBeforeWriteToStatVsTimeFil
e<<endl; 
   inputFile>>filler5>>max_Heap_Size; 
   outputFile<<setw(36)<<filler5<<setw(7)<<max_Heap_Size <<endl; 
 
   //convert from MB to byte 
   max_Heap_Size = max_Heap_Size *1024 * 1024; 
   inputFile>>filler0>>filler1>>filler3>>filler4;  
 
 
   long x1; 
   while (inputFile>>x1){ 
    inputFile>>processes[x1][HEAPTHRESHOLD] 
     >>processes[x1][PAGEAGEMUL] 
     >>processes[x1][USE_AGING_FLAG]; 
 
    //intialize a heap for eah process. 
    Heaps[x1]= new Heap(); 
    //initialize a page table for each Process 
    pageTable[x1] = new PTABLE (pageSize); 
       mallocTable[x1]= new MallocTable(); 
 
    //intialize attributes 
    processes[x1][NO_MALLOCS]=0;  
    processes[x1][NO_REFS]=0; 
    processes[x1][NO_MARKED_UNACCESSABLE]=0; 
    processes[x1][LAST_ACCESSED_REF]=0; 
    processes[x1][NO_HITS]=0;  
    processes[x1][NO_FAULTS]=0; 
    processes[x1][FALSEPOSITIVES]=0; 
    processes[x1][PAGEOUTS]=0; 
    processes[x1][AGECNT]=0; 
    processes[x1][AGEAVG]=0; 
    processes[x1][OVERHEAD]=0; 
   //intialize RAM; 
   ram = new RAM(maxRAMSize,pageSize); 
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}//ReadInputFile 
void dumpProcessesStat(){ 
  ofstream outputFile ("OutputFile.dat",ios::app);//Store Page refrences to a 
file 
 if (!outputFile){ 
  cerr << "File OutputFile.dat could not be created"; 
  exit(1); 
 } 
 outputFile<<endl; 
 outputFile  
  <<setw(10)<<"Process"  
  <<setw(15)<<"HEAPTHRESHOLD" 
  <<setw(15)<<"PAGEAGEMUL" 
  <<setw(15)<<"UseAgAlg?" 
  <<setw(15)<<"#Mallocs"  
  <<setw(15)<<"#MemRefs" 
  <<setw(15)<<"#MrkUnacc" 
  <<setw(15)<<"H_MaxSize" 
 
  <<setw(15)<<"#H_Live_obj" 
  <<setw(15)<<"#page Hits" 
  <<setw(15)<<"#page Faults" 
  <<setw(15)<<"#FalsePos"  
  <<setw(15)<<"#PageOuts" 
  <<setw(15)<<"#PgsINcInAVG" 
  <<setw(15)<<"Page AVG" 
  <<setw(15)<<"OverHead" 
     <<endl; 
 
 for (int i=0 ; i<nOfProcesses;i++)  { 
  outputFile 
  << setw(10)<<i 
  <<setw(15)<<processes[i][HEAPTHRESHOLD] 
  <<setw(15)<<processes[i][PAGEAGEMUL] 
  <<setw(15)<<processes[i][USE_AGING_FLAG] 
  <<setw(15)<<processes[i][NO_MALLOCS] 
  <<setw(15)<<processes[i][NO_REFS] 
  <<setw(15)<<processes[i][NO_MARKED_UNACCESSABLE] 
  <<setw(15)<<Heaps[i]->getHeapMaxSize () //maxSize 
   
  <<setw(15)<<Heaps[i]->getHeapLeakedObjects () 
 
  <<setw(15)<<processes[i][NO_HITS] 
  <<setw(15)<<processes[i][NO_FAULTS] 
  <<setw(15)<<processes[i][FALSEPOSITIVES] 
  <<setw(15)<<processes[i][PAGEOUTS]  
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  <<setw(15)<<processes[i][AGECNT] 
  <<setw(15)<<processes[i][AGEAVG] 
  <<setw(15)<<processes[i][OVERHEAD] 
  <<endl; 
 } 
 outputFile<<endl; 
} 
 
void createDumpFile(int flag) { 
 //clear old file 
 ofstream dumpFile ("dumpFile.dat",ios::out);//dump page tables, heaps, 
and ram to file 
 if (!dumpFile){ 
  cerr << "File dumpFile.dat could not be created"; 
  exit(1); 
 } 
 if (flag==1) {// 
  for (int x=0;x<nOfProcesses;x++) { 
   
   //dumpFile <<"\n...."<<endl;  
   pageTable[x]->dumpPTABLE (x,dumpFile); 
   //dumpFile <<"\n...."<<endl; 
   Heaps[x]->dumpHeap (x,dumpFile); 
   mallocTable[x]->dumpMallocTable(x,dumpFile); 
   //dumpFile <<"\n...."<<endl; 
  } 
  ram->dumpRAM(dumpFile); 
 
void setDirtyBit(int pCnt,long pageRef){ 
 //propability of read =50% of write 50% 
 double r = getRandomProp(); 
 
 if (r <= 0.5) { 
  pageTable[pCnt]->setDiryBit(pageRef,false);//Read 
 }else{ 
  pageTable[pCnt]->setDiryBit(pageRef,true);//Write 
List.h 

#include<iostream.h> 
#ifndef LIST_H 
#define LIST_H 
 
struct  listChunk; 
typedef listChunk * listPtrType; 
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class List { 
 
public: List(){ listHead=NULL;};//constructor 
  ~List();//destructor 
  bool isEmpty() {return listHead==NULL;} 
        void add(long ref); 
  long getItem();//get the first item and remove from list 
  void dumpList(); 
 private: 
  listPtrType listHead; 
 
};//end class 
#endif 
List.cpp 

#include "List.h" 
#include <stdlib.h> 
#include <iostream.h> 
 
struct  listChunk { 
 long memRef; 
 listPtrType next; 
}; 
 
void List::dumpList () { 
 listPtrType cur =listHead; 
 while (cur!=NULL) { 
  cout <<cur->memRef <<endl; 
  cur=cur->next; 
 } 
}//dumpList 
 
void List::add (long ref) { 
 if (listHead==NULL) { 
  //first item to add 
  listHead= new listChunk; 
  listHead->memRef =ref; 
  listHead->next=NULL; 
 }else { 
  listPtrType temp; 
  temp=new listChunk; 
  temp->memRef =ref; 
  temp->next =listHead; 
  listHead=temp; 
 } 
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long List::getItem(){ 
 long first=-1; 
 listPtrType cur=listHead; 
 
 if (!isEmpty()){ 
  first = cur->memRef; 
  listHead=listHead->next; 
  delete cur; 
  cur=NULL; 
 } 
    return first; 
 


